RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Anisotropic mechanical responses of composites having water microchannels

      한글로보기

      https://www.riss.kr/link?id=A107436622

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The combination of extremely different materials could result in composites with unique properties, although their different properties make the combination challenging. If water-swellable phases are combined with water-insoluble rubbery phases, the resulting composites can act as water-swellable and mechanically durable rubbers. Herein, novel composites of hydrophilic poly(<I>N</I>-isopropylacrylamide) (PNIPAM) or poly(ethylene glycol) and hydrophobic polyurethane (PU) or poly(dimethylsiloxane) were prepared by directional melt crystallization and a subsequent infiltration process. When the composites were compressed parallel to their microchannel direction, much higher moduli were obtained, and their unique deflection and plateau regions existed due to irreversible deformations such as buckling. The moduli of water-swollen PU/PNIPAM were higher than those of porous PU. The hysteresis of cyclic compression was maximal in the cases of parallel compression with a low swelling ratio (SR), which could effectively absorb mechanical energy input. On the other hand, perpendicular compression with a high SR produced reversible mechanical behavior. These results demonstrate that the pore-filling properties of hydrogels by swelling enhance the mechanical properties of composites. We also found that the deswelling kinetics of composites were surprisingly fast. These unique properties of water-swellable composites could be advantageous for various applications in future industries.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The mechanical properties of novel composites having two separate and distinct phases were studies. </LI> <LI> The two phases, a water-swellable and a hydrophobic rubber phases, were combined into 3D co-continuous composites. </LI> <LI> Surprisingly fast deswelling kinetics and unique anisotropic mechanical responses were found. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Novel composites having two separate and distinct phases of extremely different properties showed surprisingly fast deswelling kinetics and unique anisotropic mechanical responses.</P> <P>[DISPLAY OMISSION]</P>
      번역하기

      <P><B>Abstract</B></P> <P>The combination of extremely different materials could result in composites with unique properties, although their different properties make the combination challenging. If water-swellable phase...

      <P><B>Abstract</B></P> <P>The combination of extremely different materials could result in composites with unique properties, although their different properties make the combination challenging. If water-swellable phases are combined with water-insoluble rubbery phases, the resulting composites can act as water-swellable and mechanically durable rubbers. Herein, novel composites of hydrophilic poly(<I>N</I>-isopropylacrylamide) (PNIPAM) or poly(ethylene glycol) and hydrophobic polyurethane (PU) or poly(dimethylsiloxane) were prepared by directional melt crystallization and a subsequent infiltration process. When the composites were compressed parallel to their microchannel direction, much higher moduli were obtained, and their unique deflection and plateau regions existed due to irreversible deformations such as buckling. The moduli of water-swollen PU/PNIPAM were higher than those of porous PU. The hysteresis of cyclic compression was maximal in the cases of parallel compression with a low swelling ratio (SR), which could effectively absorb mechanical energy input. On the other hand, perpendicular compression with a high SR produced reversible mechanical behavior. These results demonstrate that the pore-filling properties of hydrogels by swelling enhance the mechanical properties of composites. We also found that the deswelling kinetics of composites were surprisingly fast. These unique properties of water-swellable composites could be advantageous for various applications in future industries.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The mechanical properties of novel composites having two separate and distinct phases were studies. </LI> <LI> The two phases, a water-swellable and a hydrophobic rubber phases, were combined into 3D co-continuous composites. </LI> <LI> Surprisingly fast deswelling kinetics and unique anisotropic mechanical responses were found. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Novel composites having two separate and distinct phases of extremely different properties showed surprisingly fast deswelling kinetics and unique anisotropic mechanical responses.</P> <P>[DISPLAY OMISSION]</P>

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼