The process of heat treatment in cold forging is an essential role in enhancing mechanical properties. However, it relies heavily on the experience and skill of individuals. The aim of this study is to predict hardness using machine learning to optimi...
The process of heat treatment in cold forging is an essential role in enhancing mechanical properties. However, it relies heavily on the experience and skill of individuals. The aim of this study is to predict hardness using machine learning to optimize production efficiency in cold forging manufacturing. Random Forest (RF), Gradient Boosting Regressor (GBR), Extra Trees (ET), and ADAboosting (ADA) models were utilized. In the result, the RF, GBR, and ET models show the excellent performance. However, it was observed that GBR and ET models leaned significantly towards the influence of temperature, unlike the RF model. We suggest that RF model demonstrates greater reliability in predicting hardness due to its ability to consider various variables that occur during the cold forging process.