<P>The photoconducting properties of a unit microflower of zinc oxide are investigated as a function of wavelength from UV to IR region at constant illumination intensity. Synthesized flowers were trapped in 2 microm gap, between pre-prepared go...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107651560
2012
-
학술저널
2406-2411(6쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The photoconducting properties of a unit microflower of zinc oxide are investigated as a function of wavelength from UV to IR region at constant illumination intensity. Synthesized flowers were trapped in 2 microm gap, between pre-prepared go...
<P>The photoconducting properties of a unit microflower of zinc oxide are investigated as a function of wavelength from UV to IR region at constant illumination intensity. Synthesized flowers were trapped in 2 microm gap, between pre-prepared gold microelectrodes, using AC dielectrophoresis. Photocurrent drastically increases upon illumination in the UV region, whereas it gradually reduces when irradiated in visible and IR region. Higher photoconductivity in UV region is correlated to band to band transition upon illumination. In visible region, deep level transitions are expected which intern exhibits comparatively low photocurrent. Photoconduction in IR region is only due to the adsorbed surface oxygen species. This investigation suggests the potential application of ZnO nanostructures for various optoelectronic device applications.</P>
Synthesis of nanocrystals of gadolinium carbonate by reaction crystallization.
Detection of 10 nM Ammonium Ions in 35‰ NaCl Solution by Carbon Nanotube Based Sensors