RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝 기반 과일 선별 시스템 = Fruit Classification System Using Deep Learning

      한글로보기

      https://www.riss.kr/link?id=A105930591

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Deep learning technology among artificial intelligence technologies has shown good results in image recognition field. In this paper, we use a learning model that is based on a Tensorflow based model that utilizes this deep learning technique and that...

      Deep learning technology among artificial intelligence technologies has shown good results in image recognition field. In this paper, we use a learning model that is based on a Tensorflow based model that utilizes this deep learning technique and that has been repaired by Inception-v3 model. Based on the characteristics of the fruit, we construct a fruit classification system that classifies into four categories : Healthy apple, Damaged apple, Diseased apple and Discolored apple. To do this, we designed a learning model in which the number of learning iterations was 500 times based on 1,280 apple image data of four kinds and conducted a model evaluation experiment based on the fruit image data taken by the user. Experiments were based on images taken in three directions for accurate model evaluation. Experimental results show that the accuracy of the learning model is more than 90%. However, since fruit showed different classification results according to direction, it suggested the necessity of classification algorithm according to image direction in the future. If such a deep learning based fruit classification system is applied to farmers, fruit quality classifiers due to farm labor shortage are essential, and it will be possible to construct a fruit quality screening system with high accuracy and low cost.

      더보기

      참고문헌 (Reference)

      1 M. Koike, "https://www.youtube.com/watch?tim e_continue=1&v=4HCE1P-m1l8"

      2 "Solaris"

      3 J. N. Park, "Rock image classification with deep convolutional neural network based on Tensorflow" Korean Institute of Information Scientists and Engineers 1121-1123, 2018

      4 S. H. Jeong, "Retraining Inception-v3 for fruits quality classification" 64-67, 2018

      5 J. T. Kim, "Machine vision technology using deep learning technique Recent application trends" 43 (43): 18-26, 2016

      6 M. Baigvand, "Machine vision system for grading of dried figs" 119 : 158-165, 2015

      7 Codelabs, "Image classification transfer learning with inception v3" Google Developers 2017

      8 "Hvass-Lab : TensorFlow Tutorials"

      9 "How a Japanese cucumber farmer is using de ep learning and TensorFlow"

      10 "Face It – The Artificially Intelligent Hairstylist"

      1 M. Koike, "https://www.youtube.com/watch?tim e_continue=1&v=4HCE1P-m1l8"

      2 "Solaris"

      3 J. N. Park, "Rock image classification with deep convolutional neural network based on Tensorflow" Korean Institute of Information Scientists and Engineers 1121-1123, 2018

      4 S. H. Jeong, "Retraining Inception-v3 for fruits quality classification" 64-67, 2018

      5 J. T. Kim, "Machine vision technology using deep learning technique Recent application trends" 43 (43): 18-26, 2016

      6 M. Baigvand, "Machine vision system for grading of dried figs" 119 : 158-165, 2015

      7 Codelabs, "Image classification transfer learning with inception v3" Google Developers 2017

      8 "Hvass-Lab : TensorFlow Tutorials"

      9 "How a Japanese cucumber farmer is using de ep learning and TensorFlow"

      10 "Face It – The Artificially Intelligent Hairstylist"

      11 S. H. Jeong, "Development of machine vision based fruit quality screening system" Korean Institute of Communication Sciences 2017

      12 Dong Hoon Lim, "Development of Apple Color Grading System by Statistical Color Image Processing" 한국통계학회 10 (10): 325-332, 2003

      13 G. S. Juan, "Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques" 39 (39): 780-785, 2012

      14 I. Sa, "DeepFruits : A fruit detection system using deep neural networks" 16 (16): 2016

      15 W. Ding, "Automatic moth detection from trap images for pest management" 123 : 17-28, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-04-09 학회명변경 영문명 : 미등록 -> Korea Knowledge Information Technology Society KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-03-17 학술지명변경 외국어명 : Journal of The Korea Knowledge Information Technology Society -> Journal of Knowledge Information Technology and Systems KCI등재
      2012-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.39 0.39 0.29
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.25 0.22 0.312 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼