RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      Regulation of Acetyl-CoA Carboxylase Gene Expressionby Hormones and Nutrients

      한글로보기

      https://www.riss.kr/link?id=A104497604

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary h...

      This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocyte from the rat was used to investigate the regulation of ACC PI activity. ACC PI (-220 bp)/luciferase chimeric plasmid was transfected into primary rat hepatocyte by using lipofectin. ACC PI activity was shown by measuring luciferase activity. The addition of insulin, dexamethasone, and triiodothyronine to the culture medium increased the activity of ACC PI by 2.5-, 2.3- and 1.8-fold, respectively. In the presence of 1 M dexamethasone, the effects of insulin was amplified about 1.2-fold showing the additional effects of dexamethasone. Moreover the activity of luciferase was increased by insulin, dexamethasone, and triiodothyronine treatment approximately 4-fold. These results indicated that insulin, dexamethasone and thyroid hormone coordinately regulate ACC gene expression via regulation of promoter I activity. On the -220 to +21 region of ACC PI, the addition of the glucose to the culture medium increased the activity of ACC PI. With 25 mM glucose, luciferase activity increased by 7-fold. On the other hand, on the -220 bp region, ACC PI activity was not changed by polyunsaturated fatty acids. Therefore, it can be postulated that there are response elements for insulin, triiodothyronine, dexamethasone, and glucose, but not PUFAs on the -220 bp region of ACC PI.

      더보기

      다국어 초록 (Multilingual Abstract)

      This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary h...

      This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocyte from the rat was used to investigate the regulation of ACC PI activity. ACC PI (-220 bp)/luciferase chimeric plasmid was transfected into primary rat hepatocyte by using lipofectin. ACC PI activity was shown by measuring luciferase activity. The addition of insulin, dexamethasone, and triiodothyronine to the culture medium increased the activity of ACC PI by 2.5-, 2.3- and 1.8-fold, respectively. In the presence of 1 μM dexamethasone, the effects of insulin was amplified about 1.2-fold showing the additional effects of dexamethasone. Moreover the activity of luciferase was increased by insulin, dexamethasone, and triiodothyronine treatment approximately 4-fold. These results indicated that insulin, dexamethasone and thyroid hormone coordinately regulate ACC gene expression via regulation of promoter I activity. On the -220 to +21 region of ACC PI, the addition of the glucose to the culture medium increased the activity of ACC PI. With 25 mM glucose, luciferase activity increased by 7-fold. On the other hand, on the -220 bp region, ACC PI activity was not changed by polyunsaturated fatty acids. Therefore, it can be postulated that there are response elements for insulin, triiodothyronine, dexamethasone, and glucose, but not PUFAs on the -220 bp region of ACC PI.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2014-06-24 학회명변경 한글명 : 한국식품영양과학회지 -> 한국식품영양과학회
      영문명 : Journal of the Korean Society of Food Science and Nutrition -> The Korean Society of Food Science and Nutrition
      KCI등재
      2014-04-02 학회명변경 한글명 : 한국식품영양과학회 -> 한국식품영양과학회지
      영문명 : 미등록 -> Journal of the Korean Society of Food Science and Nutrition
      KCI등재
      2013-10-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2012-04-06 학술지명변경 한글명 : Journal of Food Science and Nutrition -> Preventive Nutrition and Food Science
      외국어명 : Journal of Food Science and Nutrition -> Preventive Nutrition and Food Science
      KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.28 0.28 0.26
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.28 0.499 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼