RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Synthesis of Carboxymethyl Cellulose Lithium by Weak Acid Treatment and Its Application in High Energy-Density Graphite Anode for Li-Ion Batteries

      한글로보기

      https://www.riss.kr/link?id=A107444253

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Carboxymethyl cellulose lithium (CMC-Li) has recently been explored as a promising binder for Li-ion batteries because of enhanced Li<SUP>+</SUP> ion flux. CMC-Li has been generally prepared by CMC acid form (CMC-H) as an intermediate product treated with a strong acid, which considerably causes a polymer degradation. Here, we report a synthesis method of CMC-Li through the use of a weak acid (acetic acid) and its application in a high energy-density graphite anode. CMC-Li synthesized by acetic acid (CMC-Li (A)) exhibits enhanced physicochemical properties including an appropriate viscosity of ∼3000 mPa·s at a shear rate of 10 s<SUP>-1</SUP>, good slurry stability, and strong adhesion force of 1.4 gf/mm compared to those of CMC-Li synthesized by hydrochloric acid. The high energy-density graphite anode prepared with CMC-Li (A) shows higher charge/discharge capacities and capacity retentions in various rates of 0.05-2 C than those of the electrode prepared with CMC-Na that might be due to the enhanced Li<SUP>+</SUP> ion flux upon cycling.</P>
      [FIG OMISSION]</BR>
      번역하기

      <P>Carboxymethyl cellulose lithium (CMC-Li) has recently been explored as a promising binder for Li-ion batteries because of enhanced Li<SUP>+</SUP> ion flux. CMC-Li has been generally prepared by CMC acid form (CMC-H) as an intermed...

      <P>Carboxymethyl cellulose lithium (CMC-Li) has recently been explored as a promising binder for Li-ion batteries because of enhanced Li<SUP>+</SUP> ion flux. CMC-Li has been generally prepared by CMC acid form (CMC-H) as an intermediate product treated with a strong acid, which considerably causes a polymer degradation. Here, we report a synthesis method of CMC-Li through the use of a weak acid (acetic acid) and its application in a high energy-density graphite anode. CMC-Li synthesized by acetic acid (CMC-Li (A)) exhibits enhanced physicochemical properties including an appropriate viscosity of ∼3000 mPa·s at a shear rate of 10 s<SUP>-1</SUP>, good slurry stability, and strong adhesion force of 1.4 gf/mm compared to those of CMC-Li synthesized by hydrochloric acid. The high energy-density graphite anode prepared with CMC-Li (A) shows higher charge/discharge capacities and capacity retentions in various rates of 0.05-2 C than those of the electrode prepared with CMC-Na that might be due to the enhanced Li<SUP>+</SUP> ion flux upon cycling.</P>
      [FIG OMISSION]</BR>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼