RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      조작 능력이 저하된 장애인 및 환자를 위한 퍼스널 모빌리티에 대한 Q-러닝 제어 알고리즘 적용 = Application of Q-Learning Control Algorithms to Personal Mobility for the Disabled and Patients with Weak Maneuvering Abilities

      한글로보기

      https://www.riss.kr/link?id=A108330139

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Social welfare problems are gradually improving, but many problems still exist. In the case of the elderly and patients with lower extremity disorders, one most difficult factor in their daily life is the problem of restricted moving space that consid...

      Social welfare problems are gradually improving, but many problems still exist. In the case of the elderly and patients with lower extremity disorders, one most difficult factor in their daily life is the problem of restricted moving space that considerably restricts their quality of life. Therefore, this study proposed a medical personal mobility device as an auxiliary equipment for patients and the disabled using convergence technologies in various fields such as electrical, electronics, medical, and mechanical engineering as well as artificial intelligence to overcome these living barriers and implemented a table-based Q-learning algorithm for application on low-specification systems. Moreover, this study proposed the state classification method and improved it using modified Softmax functions to select optimal behaviors, and evaluated its performance.

      더보기

      참고문헌 (Reference) 논문관계도

      1 Schulman, J, "Trust Region Policy Optimization"

      2 Palmas, A, "The Reinforcement Learning Workshop" Packt Publishing Ltd 483-549, 2020

      3 Williams, R. J, "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning" 8 : 229-256, 1992

      4 Sutton, R. S, "Reinforcement Learning: An Introduction" MIT Press 1998

      5 Altuntas, N, "Reinforcement Learning-based Mobile Robot Navigation" 24 (24): 1747-1767, 2016

      6 Watkins, C. J. C. H, "Q-Learning" 8 : 279-292, 1992

      7 Schulman, J, "Proximal Policy Optimization Algorithms"

      8 Mnih, V, "Playing Atari with Deep Reinforcement Learning"

      9 Ye, D, "Modeling, Simulation and Fabrication of a Balancing Robot, 2.151: Advanced System Dynamics & Control" Massachusetts Institute of Technology 2012

      10 Siegwart, R, "Introduction to Autonomous Mobile Robots" MIT Press 62-103, 2004

      1 Schulman, J, "Trust Region Policy Optimization"

      2 Palmas, A, "The Reinforcement Learning Workshop" Packt Publishing Ltd 483-549, 2020

      3 Williams, R. J, "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning" 8 : 229-256, 1992

      4 Sutton, R. S, "Reinforcement Learning: An Introduction" MIT Press 1998

      5 Altuntas, N, "Reinforcement Learning-based Mobile Robot Navigation" 24 (24): 1747-1767, 2016

      6 Watkins, C. J. C. H, "Q-Learning" 8 : 279-292, 1992

      7 Schulman, J, "Proximal Policy Optimization Algorithms"

      8 Mnih, V, "Playing Atari with Deep Reinforcement Learning"

      9 Ye, D, "Modeling, Simulation and Fabrication of a Balancing Robot, 2.151: Advanced System Dynamics & Control" Massachusetts Institute of Technology 2012

      10 Siegwart, R, "Introduction to Autonomous Mobile Robots" MIT Press 62-103, 2004

      11 Geron, A, "Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow" O’Reilly Media 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼