In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the ...
In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the difficulty in obtaining the priori estimate from the discrete energy conservation law, the cut‐off function technique is employed to prove the convergence, which shows the new scheme possesses second order accuracy in time and fourth order accuracy in space, respectively. Additionally, several numerical results are reported to confirm our theoretical analysis. Lastly, we apply the reliable method to simulate and study the collisions of solitary waves numerically.