RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      The Hybrid Method of SOM Artificial Neural Network and Median Thresholding for Segmentation of Blood Vessels in the Retina Image Fundus

      한글로보기

      https://www.riss.kr/link?id=A106487526

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Blood vessels in the retina of the eye are one important sign when making a diagnosis of hypertensive retinopathy. On the retina can be known several signs including tortuosity and arteriovenous ratio. Blood vessels mixed with a number of objects in t...

      Blood vessels in the retina of the eye are one important sign when making a diagnosis of hypertensive retinopathy. On the retina can be known several signs including tortuosity and arteriovenous ratio. Blood vessels mixed with a number of objects in the retina, the segmentation of blood vessels becomes a very interesting challenge because they have to separate blood vessels from a number of objects. This study aims to segmentation blood vessels using the main method of self-organizing maps artificial neural networks (SOMANN). The proposed segmentation method is divided into three stages, namely preprocessing, segmentation, and performance analysis. The preprocessing step is to improve image quality using the contrast-limited adaptive histogram equalization (CLAHE), median filter, and morphology. The segmentation stage uses the SOM-ANN algorithm combined with the mean or median thresholding. The performance parameters which are measured consist of sensitivity, specificity, and area under the curve (AUC). The test results using the dataset STARE and DRIVE show that the median thresholding is able to provide the best AUC performance compared to the mean thresholding. The proposed segmentation model is able to provide performance in the excellent category, with AUC values of 90.55% for the STARE dataset and 90.35% for the DRIVE.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Methods
      • 3. Analysis
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Methods
      • 3. Analysis
      • 4. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 Chad Anderson, "Tablet computers in support of rural and frontier clinical practice" Elsevier BV 82 (82): 1046-1058, 2013

      2 G. B. Kande, "Segmentation of vessels in fundus images using spatially weighted fuzzy c-means clustering algorithm" 7 (7): 102-109, 2007

      3 J. Staal, "Ridge-Based Vessel Segmentation in Color Images of the Retina" Institute of Electrical and Electronics Engineers (IEEE) 23 (23): 501-509, 2004

      4 H. A. Nugroho, "Retinal vessel segmentation based on Frangi filter and morphological reconstruction" 181-184, 2017

      5 R. GeethaRamani, "Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis" Elsevier BV 36 (36): 102-118, 2016

      6 A. E. Hassanien, "Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search" 31 : 186-196, 2015

      7 Temitope Mapayi, "Retinal Vessel Segmentation: A Comparative Study of Fuzzy C-Means and Sum Entropy Information on Phase Congruency" SAGE Publications 12 (12): 133-, 2015

      8 Nogol Memari, "Retinal Blood Vessel Segmentation by Using Matched Filtering and Fuzzy C-means Clustering with Integrated Level Set Method for Diabetic Retinopathy Assessment" Springer Science and Business Media LLC 39 (39): 713-731, 2019

      9 F. Sabaz, "ROI detection and vessel segmentation in retinal image" 42 (42): 85-89, 2017

      10 K. Rezaee, "Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization" 52 : 937-951, 2017

      1 Chad Anderson, "Tablet computers in support of rural and frontier clinical practice" Elsevier BV 82 (82): 1046-1058, 2013

      2 G. B. Kande, "Segmentation of vessels in fundus images using spatially weighted fuzzy c-means clustering algorithm" 7 (7): 102-109, 2007

      3 J. Staal, "Ridge-Based Vessel Segmentation in Color Images of the Retina" Institute of Electrical and Electronics Engineers (IEEE) 23 (23): 501-509, 2004

      4 H. A. Nugroho, "Retinal vessel segmentation based on Frangi filter and morphological reconstruction" 181-184, 2017

      5 R. GeethaRamani, "Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis" Elsevier BV 36 (36): 102-118, 2016

      6 A. E. Hassanien, "Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search" 31 : 186-196, 2015

      7 Temitope Mapayi, "Retinal Vessel Segmentation: A Comparative Study of Fuzzy C-Means and Sum Entropy Information on Phase Congruency" SAGE Publications 12 (12): 133-, 2015

      8 Nogol Memari, "Retinal Blood Vessel Segmentation by Using Matched Filtering and Fuzzy C-means Clustering with Integrated Level Set Method for Diabetic Retinopathy Assessment" Springer Science and Business Media LLC 39 (39): 713-731, 2019

      9 F. Sabaz, "ROI detection and vessel segmentation in retinal image" 42 (42): 85-89, 2017

      10 K. Rezaee, "Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization" 52 : 937-951, 2017

      11 A. F. Frangi, "Medical Image Computing and Computer-Assisted Intervention" Springer 130-137, 1998

      12 A.D. Hoover, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response" Institute of Electrical and Electronics Engineers (IEEE) 19 (19): 203-210, 2000

      13 L. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications" Prentice-Hall 1994

      14 N. Dey, "FCM based blood vessel segmentation method for retinal images" 1 (1): 1-5, 2012

      15 S. S. Kar, "Extraction of retinal blood vessel using curvelet transform and fuzzy c-means" 3392-3397, 2014

      16 Teuvo Kohonen, "Essentials of the self-organizing map" Elsevier BV 37 : 52-65, 2013

      17 R. C. Gonzalez, "Digital Image Processing" Prentice-Hall 2002

      18 F. Oloumi, "Detection of blood vessels in retinal fundus images" 22 (22): 155-185, 2014

      19 M. Hegland, "Data mining: challenges, models, methods and algorithms"

      20 F. Gorunescu, "Data Mining: Concepts, Models and Techniques" Springer 2011

      21 Jinxiang Ma, "Contrast Limited Adaptive Histogram Equalization-Based Fusion in YIQ and HSI Color Spaces for Underwater Image Enhancement" World Scientific Pub Co Pte Lt 32 (32): 1854018-, 2018

      22 C. A. Lupascu, "Computational Intelligence Methods for Bioinformatics and Biostatistics" Springer 263-274, 2010

      23 Cenk Budayan, "Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping" Elsevier BV 36 (36): 11772-11781, 2009

      24 Wiharto, "Blood vessels segmentation in retinal fundus image using hybrid method of Frangi filter, Otsu thresholding and morphology" 10 (10): 417-422, 2019

      25 S. Supot, "Automatic segmentation of blood vessels in retinal image based on fuzzy k-median clustering" 584-588, 2007

      26 Wiharto Wiharto, "Assessment of Early Hypertensive Retinopathy using Fractal Analysis of Retinal Fundus Image" Universitas Ahmad Dahlan 16 (16): 445-, 2018

      27 Díaz Primitivo, "A hybrid method for blood vessel segmentation in images" Elsevier BV 39 (39): 814-824, 2019

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-18 학회명변경 한글명 : 한국퍼지및지능시스템학회 -> 한국지능시스템학회
      영문명 : Korea Fuzzy Logic And Intelligent Systems Society -> Korean Institute of Intelligent Systems
      KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.35 0.853 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼