RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Parametric study on a simplified model for the estimation of the heating and the cooling loads of a closed-span greenhouse: a case study in Korea

      한글로보기

      https://www.riss.kr/link?id=A107231255

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The modeling of greenhouse heating and cooling loads at the required operating conditions is important for greenhouse managers or planners. However, the conventional model for the greenhouse thermal load prediction is complex for staff without suffici...

      The modeling of greenhouse heating and cooling loads at the required operating conditions is important for greenhouse managers or planners. However, the conventional model for the greenhouse thermal load prediction is complex for staff without sufficient academic background. Therefore, a steady-state simplified model based on the estimation of related heat transfer parameters was developed to predict the hourly heating and cooling requirements of the closed greenhouses in Korea and the Northeastern Asian region. In the suggested approach, the thermal load was simplified as a function of greenhouse size, the temperature difference between the setting indoor temperature and the ambient temperature, total horizontal solar radiation, overall heat transfer coefficient, and the fraction factor of solar conversion. Except the designed parameters and the climatic variables, the overall heat transfer coefficient and the fraction factor of the solar conversion were restored using an inverse procedure based on a linear regression approach, which was assessed with synthetic data calculated using the TRNSYS software. The climatic data from meteonorm assisted the simulations for six Northeastern Asian locations. The short-term load profiles and the monthly thermal energy consumptions from eight case studies with different greenhouse sizes and locations were validated with the TRNSYS solutions. The mean bias error and the coefficient of variation of the root-mean-square-error of annual loads were controlled within 5 % and 11 %, respectively.
      Satisfactory results suggested that the simplified model could be used for the greenhouse thermal load estimation especially in Korea and the Northeastern Asian region. However, the model should be tested with more regions in future work for extensive applications.

      더보기

      참고문헌 (Reference)

      1 V. P. Sethi, "Thermal modeling of a green house integrated to an aquifer coupled cavity flow heat exchanger system" 81 (81): 723-741, 2007

      2 V. P. Sethi, "Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications" 82 (82): 832-859, 2018

      3 A. M. Abdel-Ghany, "Solar energy utilization by a greenhouse: general relations" 36 (36): 189-196, 2011

      4 M. A. Abdel-Ghany, "Solar energy conversions in the greenhouses" 1 (1): 219-226, 2011

      5 H. G. Mobtaker, "Solar energy conservation in greenhouse: thermal analysis and experimental validation" 96 : 509-519, 2016

      6 H. G. Mobtaker, "Simulation of thermal performance of solar greenhouse in north-west of Iran: an experimental validation" 135 : 88-97, 2019

      7 G. Pagliarini, "Restoration of the building hourly space heating and cooling loads from the monthly energy consumption" 49 : 348-355, 2012

      8 "Multizone Building modeling with Type56 and TRNBuild"

      9 I. M. Al-Helal, "Modified thermal model to predict the natural ventilation of greenhouses" 99 : 1-8, 2015

      10 E. Mashonjowa, "Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model" 91 : 381-393, 2013

      1 V. P. Sethi, "Thermal modeling of a green house integrated to an aquifer coupled cavity flow heat exchanger system" 81 (81): 723-741, 2007

      2 V. P. Sethi, "Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications" 82 (82): 832-859, 2018

      3 A. M. Abdel-Ghany, "Solar energy utilization by a greenhouse: general relations" 36 (36): 189-196, 2011

      4 M. A. Abdel-Ghany, "Solar energy conversions in the greenhouses" 1 (1): 219-226, 2011

      5 H. G. Mobtaker, "Solar energy conservation in greenhouse: thermal analysis and experimental validation" 96 : 509-519, 2016

      6 H. G. Mobtaker, "Simulation of thermal performance of solar greenhouse in north-west of Iran: an experimental validation" 135 : 88-97, 2019

      7 G. Pagliarini, "Restoration of the building hourly space heating and cooling loads from the monthly energy consumption" 49 : 348-355, 2012

      8 "Multizone Building modeling with Type56 and TRNBuild"

      9 I. M. Al-Helal, "Modified thermal model to predict the natural ventilation of greenhouses" 99 : 1-8, 2015

      10 E. Mashonjowa, "Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model" 91 : 381-393, 2013

      11 A. Ganguly, "Model development and experimental validation of a floriculture greenhouse under natural ventilation" 41 (41): 521-527, 2009

      12 Diop, Souleymane, "Measurement and Comparison of Overall Heat Transfer Coefficients for Greenhouse Covering Materials with Thermal Screens" 한국농공학회 56 (56): 41-51, 2014

      13 M. Canakci, "Heating requirement and its costs in greenhouse structures: a case study for Mediterranean region of Turkey" 24 : 483-490, 2013

      14 M. De Rosa, "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach" 128 : 217-229, 2014

      15 O. Ozgener, "Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system" 37 (37): 101-110, 2005

      16 M. Esen, "Experimental evaluation of using various renewable energy sources for heating a greenhouse" 65 : 340-351, 2013

      17 D. Crawley, "EnergyPlus: creating a new-generation building energy simulation program" 33 : 319-331, 2011

      18 A. Vadiee, "Energy management strategies for commercial greenhouses" 114 : 880-888, 2014

      19 J. Chen, "Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method" 174 : 1087-1100, 2015

      20 N. Natasa, "Energy cost models for air supported sports hall in cold climates considering energy efficiency" 84 : 56-64, 2015

      21 Y. Shen, "Energy consumption prediction of a greenhouse and optimization of daily average temperature" 11 (11): 65-, 2018

      22 M. Djevic, "Energy consumption for different greenhouse constructions" 34 (34): 1325-1331, 2009

      23 A. Vadiee, "Energy analysis and thermoeconomic assessment of the closed greenhouse - the largest commercial solar building" 102 : 1256-1266, 2013

      24 C. Stanciu, "Effect of greenhouse orientation with respect to E-W axis on its required heating and cooling loads" 85 : 498-504, 2016

      25 M. S. Ahamed, "Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses" 150 : 235-244, 2018

      26 A. Rasheed, "Development of a model to calculate the overall heat transfer coefficient of greenhouse covers" 15 (15): 2017

      27 P. Shen, "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study" 223 : 188-214, 2018

      28 D. Yan, "DeST - an integrated building simulation toolkit, part I: fundamentals" 1 (1): 95-110, 2008

      29 A. Nemś, "Analysis of the possibilities of using a heat pump for greenhouse heating in Polish climatic conditions-a case study" 10 (10): 3483-, 2018

      30 R. H. E. Hassanien, "Advanced applications of solar energy in agricultural greenhouses" 54 : 989-1001, 2016

      31 L. Semple, "A techno-economic analysis of seasonal thermal energy storage for greenhouse applications" 154 : 175-187, 2017

      32 Sung Lee, "A study on the energy efficiency improvement of greenhouses – with a focus on the theoretical and experimental analyses" 대한기계학회 26 (26): 3331-3338, 2012

      33 D. Lin, "A simplified method to predict hourly building cooling load for urban energy planning" 58 : 281-291, 2013

      34 M. S. Ahamed, "A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions" 5 (5): 33-46, 2018

      35 S. Moretti, "A photovoltaic greenhouse with passive variation in shading by fixed horizontal pv panels" 12 (12): 3269-, 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼