Spectroscopic studies of trans-1,2-bispyrazylethylene (BPE), one of the stilbene analogues, were carried out. In normal UV spectra, a distinct $n{\rightarrow}{\pi}^*$ absorption band is missing because of a strong, nearly isoenergetic ${\pi}{\rightarr...
Spectroscopic studies of trans-1,2-bispyrazylethylene (BPE), one of the stilbene analogues, were carried out. In normal UV spectra, a distinct $n{\rightarrow}{\pi}^*$ absorption band is missing because of a strong, nearly isoenergetic ${\pi}{\rightarrow}{\pi}^*$ absorption band. The second derivative and low temperature $(77^{\circ}K)$ UV absorption spectra were taken and $n{\rightarrow}{\pi}^*$ absorption band was identified by these methods. The transition energies of ${\pi}{\rightarrow}{\pi}^*$ transitions were calculated by Pariser-Parr-Pople (PPP)-SCF-CI MO method. The calculated values showed good agreement with the observed spectral data. Luminescence studies were also carried out at low temperature. From the fluorescence spectra, fluorescence polarization studies, and PPP-SCF-CI MO calculation, the fluorescent state was determined to be a singlet $({\pi},\;{\pi}^*)$ state. This conclusion is in good agreement with the results obtained from alkaline salt effects on the fluorescence of this compound.