RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Human motivated multicamera video analytics.

      한글로보기

      https://www.riss.kr/link?id=T13399416

      • 저자
      • 발행사항

        [S.l.]: University of California, Santa Barbara 2013

      • 학위수여대학

        University of California, Santa Barbara Electrical & Computer Engineering

      • 수여연도

        2013

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        164 p.

      • 지도교수/심사위원

        Adviser: B. S. Manjunath.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The continued emergence of inexpensive sensors and storage has made the collection and processing of large quantities of visual data practical, opening up new possibilities in data exploitation and understanding. The volume of data also makes it incr...

      The continued emergence of inexpensive sensors and storage has made the collection and processing of large quantities of visual data practical, opening up new possibilities in data exploitation and understanding. The volume of data also makes it increasingly difficult to rely solely on humans for review, requiring assistance from automated systems to use large data sources to their full potential. However, while large data has also enabled new algorithmic techniques, computer performance still lags behind that of humans. The work in this thesis addresses both sides of this problem by exploring both how automated systems can make the most of large data and how they can be refined to act more human when doing so. I will discuss video summarization as applied to a network of 11 cameras and show how our system makes the network data more accessible to human operators while also using human feedback to guide its design. A novel approach to object tracking that uses large-scale human annotation to implicitly apply human scene understanding in an automated system will also be discussed. Finally, I will present recent work in using functional magnetic resonance imaging (fMRI) to explore how quantitative human feedback can be directly collected from a subject and applied to debugging traditional computer vision algorithms to bring them closer to human capabilities.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼