RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements

      한글로보기

      https://www.riss.kr/link?id=A103902767

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (τ k) is long enough not only to satisfy the cyclotron resonance condition (ωcτ k > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.
      번역하기

      The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this s...

      The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (τ k) is long enough not only to satisfy the cyclotron resonance condition (ωcτ k > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.

      더보기

      참고문헌 (Reference)

      1 Watanuki, A., 63 : 419-, 2006

      2 Santos, H. D. L., 35 : 1972-, 1988

      3 Steckl, A., 1 : 3-, 2007

      4 Bliumenfeld, L. A., 4 : 515-, 1959

      5 Shulman, R. G., 5 : 52-, 1961

      6 Walsh Jr, W. M., 16 : 1041-, 1961

      7 Nakamae, S., 94 : 248102-, 2005

      8 Mizoguchi, K., 72 : 033106-, 2005

      9 Lee, C. H., 73 : 224417-, 2006

      10 Mirkin, C. A., 382 : 607-, 1996

      1 Watanuki, A., 63 : 419-, 2006

      2 Santos, H. D. L., 35 : 1972-, 1988

      3 Steckl, A., 1 : 3-, 2007

      4 Bliumenfeld, L. A., 4 : 515-, 1959

      5 Shulman, R. G., 5 : 52-, 1961

      6 Walsh Jr, W. M., 16 : 1041-, 1961

      7 Nakamae, S., 94 : 248102-, 2005

      8 Mizoguchi, K., 72 : 033106-, 2005

      9 Lee, C. H., 73 : 224417-, 2006

      10 Mirkin, C. A., 382 : 607-, 1996

      11 Gazit, E., 274 : 317-, 2007

      12 Alivisatos, A. P., 382 : 609-, 1996

      13 Park, S. Y., 110 : 12673-, 2006

      14 Richter, J., 16 : 157-, 2003

      15 Gordy, W., 53 : 751-, 1965

      16 Sheng, P. K., 4 : 263-, 1959

      17 Muller, A., 4 : 214-, 1961

      18 Blois Jr, M. S., 3 : 275-, 1963

      19 Mizoguchi, K., 96 : 089801-, 2006

      20 Nakamae, S., 96 : 089802-, 2006

      21 Franklin, R. E., 6 : 673-, 1953

      22 O'Brien, F. E. M., 25 : 73-, 1948

      23 Lee, S. L., 108 : 3098-, 2004

      24 Tinkham, M., 97 : 951-, 1954

      25 Yagi, M., 33 : 152-, 2004

      26 Shields, H., 45 : 269-, 1959

      27 Ehrenberg, A., 157 : 1317-, 1967

      28 Iiyama, T., 8 : 135-, 2003

      29 Castner, T., 32 : 668-, 1960

      30 Kliava, J., 134 : 411-, 1986

      31 Warman, J. M., 249 : 319-, 1996

      32 Briman, M., 4 : 733-, 2004

      33 Endres, R. G., 76 : 195-, 2004

      34 Kelley, S. O., 283 : 375-, 1999

      35 Nunez, M. E., 40 : 12465-, 2001

      36 Boon, E. M., 12 : 320-, 2002

      37 Delaney, S., 68 : 6475-, 2003

      38 Giese, B., 6 : 612-, 2002

      39 Okamoto, A., 125 : 5066-, 2003

      40 Henderson, P. T., 96 : 8353-, 1999

      41 Barnett, R. N., 294 : 567-, 2001

      42 Lewis, F. D., 406 : 51-, 2000

      43 Lewis, F. D., 126 : 8206-, 2004

      44 Mizoguchi, K., 76 : 043801-, 2007

      45 Levy, L. P., 189 : 204-, 1993

      46 Kasumov, A. Y., 291 : 280-, 2001

      47 Tagami, K., 119 : 7491-, 2003

      48 Cai, Z. L., 104 : 6942-, 2000

      49 Minot, E. D., 428 : 536-, 2004

      50 Livolant, F., 21 : 1115-, 1996

      51 Smalyukh, I. I., 96 : 177801-, 2006

      52 Lorman, V., 87 : 218101-, 2001

      53 Manna, F., 75 : 030901(R)-, 2007

      54 Kornyshev, A. A., 95 : 148102-, 2005

      55 Mesquita, M. V., 102 : 1116-, 2005

      56 Sension, R. J., 446 : 740-, 2007

      57 Bagguley, D. M. S., 262 : 340-, 1961

      58 Bagguley, D. M. S., 262 : 365-, 1961

      59 Canali, C., 12 : 2265-, 1975

      60 Jacoboni, C., 24 : 1014-, 1981

      61 Grote, J. G., 426 : 3-, 2005

      62 Herak, J. N. E., "p. r. of Irradiated Single Crystals of the Nucleic Acid Constituents in Physico-chemical Properties of Nucleic Acids, Vol. 1" Academic Press 197-, 1973

      63 Cai, Z., "Studies of Excess Electron and Hole Transfer in DNA at Low Temperatures in Long-Range Transfer in DNA II" Springer 103-, 2004

      64 Nicolau, C., "Short-lived Free Radicals in Aqueous Solutions of Nucleic Acid Components in Physico-chemical Properties of Nucleic Acids, Vol. 1" Academic Press 143-, 1973

      65 Kahn, O., "Molecular Magnetism" VCH 1993

      66 Schuster, G. B., "Long-Range Charge Transfer in DNA II" Springer 2004

      67 Schuster, G. B., "Long-Range Charge Transfer in DNA I" Springer 2004

      68 Kittel, C., "Introduction to Solid State Physics" John Wiley 423-, 1991

      69 Jeong-Mi Lee, "Interaction of Ruthenium(II)[(1,10-phenanthroline)2benzodipyrido[3,2-a:2',3'-c]- phenazine]2+ with Single Stranded Poly(dA) and Poly(dT): Turning off the Light Switch" 대한화학회 28 (28): 965-969, 2007

      70 Kittel, C., "In Introduction to Solid State Physics" John Wiley 413-, 1991

      71 von Sonntag, C., "Free-radical-Induced DNA Damage and Its Repair: A Chemical Perspective" Springer 2006

      72 Griffiths, D. J., "Faraday's Law in Introduction to Electrodynamics" Prentice Hall 301-, 1999

      73 Heeyoung Kim, "Environment Dependent Coherence of a Short DNA Charge Transfer System" 대한화학회 28 (28): 607-612, 2007

      74 Nechtschein, M., "Electron Spin Dynamics in Handbook of Conducting Polymers" Marcel Dekker, Inc 141-, 1998

      75 Sevilla, M. D., "ESR Studies of Radiation Damage to DNA and Related Biomolecules in Electron Paramagnetic Resonance. Vol. 19" RSC Publishing 243-, 2004

      76 Lax, B., "Cyclotron Resonance in Solid State Physics. Vol. 11" Academic Press 261-, 1960

      77 Wagenknecht, H.-A., "Charge Transfer in DNA: From Mechanism to Application" Wiley-VCH 2005

      78 Wertz, J. E., "Appendix D Experimental Methods; Spectrometer Performance in Electron Spin Resonance: Elementary Theory and Practical Applications" McGraw-Hill Book Company 450-, 1972

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 SCI 등재 (기타) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.58 0.11 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.23 0.213 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼