In this paper, we investigate the stability problems for a functional equation f(x + 2y)+f(x - 2y) - 4f(x + y) - 4f(x - y) + 6f(x) - 2f(2y) + 12f(y) - 4f(-y) = 0 by using the fixed point theory in the sense of L. C˘adariu and V. Radu.
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106392178
2019
English
KCI등재
학술저널
559-568(10쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper, we investigate the stability problems for a functional equation f(x + 2y)+f(x - 2y) - 4f(x + y) - 4f(x - y) + 6f(x) - 2f(2y) + 12f(y) - 4f(-y) = 0 by using the fixed point theory in the sense of L. C˘adariu and V. Radu.
In this paper, we investigate the stability problems for a functional equation f(x + 2y)+f(x - 2y) - 4f(x + y) - 4f(x - y) + 6f(x) - 2f(2y) + 12f(y) - 4f(-y) = 0 by using the fixed point theory in the sense of L. C˘adariu and V. Radu.
DEFINING FIELDS OF SPECIAL SUPERSINGULAR K3 SURFACES
ADAPTATION OF THE MINORANT FUNCTION FOR LINEAR PROGRAMMING
THE CARATHE ́ODORY-CARTAN-KAUP-WU THEOREM ON KOBAYASHI HYPERBOLIC ALMOST COMPLEX MANIFOLDS