we prove that, given any compact metric space X, there exists a residual subset R of H(X), the space of all homeomorphisms on X, such that if $\in$ R has a totally chain-transitive attractor A, then any g sufficiently close to f has a totally chain tr...
we prove that, given any compact metric space X, there exists a residual subset R of H(X), the space of all homeomorphisms on X, such that if $\in$ R has a totally chain-transitive attractor A, then any g sufficiently close to f has a totally chain transitive attractor A$\_{g}$ which is convergent to A in the Hausdorff topology.