RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      국민건강검진데이터기반혈색소(헤모글로빈) 예측모델링 = The Hemoglobin Prediction Modeling Based on the National Health Data

      한글로보기

      https://www.riss.kr/link?id=A109488964

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Purpose: Leveraging on the contemporary machine learning algorithms, we would like to improve the prediction
      performance of the existing MLR(MultipleLinearRegression)modeltopredictthebloodhemoglobinlevels.
      Methods: The GBDT(Gradient Boosting Decision Trees) such as the XGBoost(Extreme Gradient Boosting),
      the LightGBM(Light Gradient Boosting Machine), and the CatBoost(Categorical Boost), the RF(Random
      Forests), and the MLP(Multi-Layer Perceptron) are adopted to build the new prediction models.
      Results: The machine learning algorithms provide prediction performance better than the existing prediction
      model.
      Conclusion: The proposed prediction models can be considered as an alternative better than the existing
      prediction model.
      번역하기

      Purpose: Leveraging on the contemporary machine learning algorithms, we would like to improve the prediction performance of the existing MLR(MultipleLinearRegression)modeltopredictthebloodhemoglobinlevels. Methods: The GBDT(Gradient Boosting Decision ...

      Purpose: Leveraging on the contemporary machine learning algorithms, we would like to improve the prediction
      performance of the existing MLR(MultipleLinearRegression)modeltopredictthebloodhemoglobinlevels.
      Methods: The GBDT(Gradient Boosting Decision Trees) such as the XGBoost(Extreme Gradient Boosting),
      the LightGBM(Light Gradient Boosting Machine), and the CatBoost(Categorical Boost), the RF(Random
      Forests), and the MLP(Multi-Layer Perceptron) are adopted to build the new prediction models.
      Results: The machine learning algorithms provide prediction performance better than the existing prediction
      model.
      Conclusion: The proposed prediction models can be considered as an alternative better than the existing
      prediction model.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼