RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

      한글로보기

      https://www.riss.kr/link?id=A106345410

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean c...

      Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor.
      Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

      더보기

      참고문헌 (Reference)

      1 IOCCG, "Why ocean colour? The societal benefits of ocean-colour technology" Dartmouth 141-, 2008

      2 Bricaud, A., "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization" 100 (100): 13321-13332, 1995

      3 Hattab, T., "Validation of chlorophyll-α concentration maps from Aqua MODIS over the Gulf of Gabes (Tunisia): Comparison between MedOC3 and OC3M bio-optical algorithms" 34 (34): 7163-7177, 2013

      4 Kratzer, S., "The use of ocean color remote sensing in integrated coastal zone management-A case study from Himmerfjärden, Sweden" 43 : 29-39, 2014

      5 Wilson, C., "The rocky road from research to operations for satellite ocean colour data in fishery management" 68 : 677-686, 2011

      6 Harley, C. D., "The impacts of climate change in coastal marine systems" 9 (9): 228-241, 2006

      7 Hoegh-Guldberg, O., "The impact of climate change on the world's marine ecosystems" 328 (328): 1523-1528, 2010

      8 Donlon, C., "The global monitoring for environment and security (GMES) sentinel-3 mission" 120 : 37-57, 2012

      9 Aiken, J., "The SeaWiFS CZCS-type pigment algorithm" NASA Goddard Space Flight Center 34-, 1995

      10 Doerffer, R., "The MERIS Case 2 water algorithm" 28 (28): 517-535, 2007

      1 IOCCG, "Why ocean colour? The societal benefits of ocean-colour technology" Dartmouth 141-, 2008

      2 Bricaud, A., "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization" 100 (100): 13321-13332, 1995

      3 Hattab, T., "Validation of chlorophyll-α concentration maps from Aqua MODIS over the Gulf of Gabes (Tunisia): Comparison between MedOC3 and OC3M bio-optical algorithms" 34 (34): 7163-7177, 2013

      4 Kratzer, S., "The use of ocean color remote sensing in integrated coastal zone management-A case study from Himmerfjärden, Sweden" 43 : 29-39, 2014

      5 Wilson, C., "The rocky road from research to operations for satellite ocean colour data in fishery management" 68 : 677-686, 2011

      6 Harley, C. D., "The impacts of climate change in coastal marine systems" 9 (9): 228-241, 2006

      7 Hoegh-Guldberg, O., "The impact of climate change on the world's marine ecosystems" 328 (328): 1523-1528, 2010

      8 Donlon, C., "The global monitoring for environment and security (GMES) sentinel-3 mission" 120 : 37-57, 2012

      9 Aiken, J., "The SeaWiFS CZCS-type pigment algorithm" NASA Goddard Space Flight Center 34-, 1995

      10 Doerffer, R., "The MERIS Case 2 water algorithm" 28 (28): 517-535, 2007

      11 Rast, M., "The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission" 20 (20): 1681-1702, 1999

      12 Park, K. -A., "Surface currents from hourly variations of suspended particulate matter from Geostationary Ocean Color Imager data" 39 (39): 1929-1949, 2018

      13 Clarke, G. L., "Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration" 167 : 1119-1121, 1970

      14 Carder, K. L., "Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitratedepletion temperatures" 104 (104): 5403-5421, 1999

      15 Yoder, J.A., "Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements" 17 (17): 1112-, 2003

      16 El-Habashi, A., "Satellite retrievalsof Karenia brevis harmful algal blooms in the West Florida shelf using neural networks and impacts of temporal variabilities" 11 (11): 032408-, 2017

      17 Shen, L., "Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework" 12 : 7778-7803, 2012

      18 Yoder, J. A., "Satellite ocean color-status report" 1 (1): 18-20, 1988

      19 Babin, S. M., "Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert" 109 : C03043-, 2007

      20 Aiken, J., "Remote sensing of oceanic biology in relation to global climate change" 28 : 579-590, 1992

      21 Klemas, V., "Remote sensing of coastal plumes and ocean fronts: overview and case study" 28 (28): 1-7, 2011

      22 Pitarch, J., "Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data" 12 (12): 379-389, 2016

      23 Gordon, H., "Remote assessment of ocean color for interpretation of satellite visible imagery: A review Vol. 4" Springer-Verlag 114-, 1983

      24 IOCCG, "Remote Sensing of Inherent Optical Properties: Fundamentals, tests of algorithms, and applications" Dartmouth 129-, 2006

      25 Siegel, D. A., "Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission" 135 : 77-91, 2013

      26 Carder, K. L., "Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products" 96 (96): 20599-20611, 1991

      27 Hu, C., "Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters" 97 (97): 311-321, 2005

      28 Racault, M. F., "Phytoplankton phenology in the global ocean" 14 (14): 152-163, 2012

      29 Dierssen, H. M., "Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a hanging climate" 107 (107): 17073-17078, 2010

      30 Carder, K. L., "Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a" 33 (33): 1152-1159, 2004

      31 Seegers, B. N., "Performance metrics for the assessment of satellite data products: An ocean color case study" 26 : 7404-7422, 2018

      32 Neville, R.A., "Passive remote sensing of phytoplankton via chlorophyll α fluorescence" 82 (82): 3487-3493, 1977

      33 Maritorena, S., "Optimization of a semi analytical ocean color model for global-scale applications" 41 : 2705-2714, 2002

      34 Ruddick, K. G., "Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties" 40 (40): 3575-3585, 2001

      35 Bukata, R. P., "Optical properties and remote sensing of inland and coastal waters" CRC Press 384-, 2018

      36 Smetacek, V., "On phytoplankton trends" 319 (319): 1346-1348, 2008

      37 Hovis, W. A., "Oceanography from space" Springer 213-225, 1981

      38 IOCCG, "Ocean-colour observations from a geostationary orbit" Dartmouth 103-, 2012

      39 IOCCG, "Ocean-Colour Data Merging" Dartmouth 68-, 2007

      40 Feldman, G., "Ocean color: Availability of the global data set" 70 (70): 634-641, 1989

      41 Murakami, H., "Ocean color estimation by Himawari- 8/AHI" International Society for Optics and Photonics 987810-, 2016

      42 O’Reilly, J. E., "Ocean color chlorophyll algorithms for SeaWiFS" 103 : 24937-24953, 1998

      43 McClain, C. R., "Ocean Colour: Theory and applications in a decade of CZCS experience" Springer 167-188, 1993

      44 Park, J. -E., "Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data" 7 (7): 1131-1140, 2016

      45 Gower, J., "Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor" 30 (30): 17-25, 2004

      46 O’Reilly, J. E., "NASA Technical Memorandum 2000-206892" NASA Goddard Space Flight Center 49-, 2000

      47 Franz, B. A., "Moderate Resolution Imaging Spectroradiometer on Terra: limitations for ocean color applications" 2 (2): 023525-, 2008

      48 Doney, S. C., "Mesoscale variability of sea-viewing wide fieldof-view sensor (SeaWiFS) satellite ocean color: Global patterns and spatial scales" 108 (108): 3024-, 2003

      49 Pottier, C., "Merging SeaWiFS and MODIS/Aqua ocean color data in North and Equatorial Atlantic using weighted averaging and objective analysis" 44 (44): 3436-3451, 2006

      50 Robinson, I. S., "Measuring the oceans from space: The principles and methods of satellite oceanography" Springer Science & Business Media 670-, 2004

      51 Tassan, S., "Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters" 33 (33): 2369-2378, 1994

      52 문정언, "Initial Validation of GOCI Water Products against in situ Data Collected around Korean Peninsula for 2010-2011" 한국해양과학기술원 47 (47): 261-277, 2012

      53 Garver, S.A., "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea" 102 (102): 18607-18625, 1997

      54 Roesler, C.S., "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance" 100 (100): 13279-13294, 1995

      55 Hu, C., "Improving satellite global chlorophyll a data products through algorithm refinement and data recovery" 124 (124): 1524-1543, 2019

      56 Pradhan, Y., "Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data" 7 (7): 343-, 2005

      57 Schiller, H., "Improved determination of coastal water constituent concentrations from MERIS data" 43 (43): 1585-1591, 2005

      58 Uz, M., "High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables" 51 : 1001-1017, 2004

      59 Gregg, W.W., "Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the Coastal Zone Color Scanner era" 106 (106): 2499-2515, 2001

      60 Wilson, C., "Global climatological relationships between satellite biological and physical observations and upper ocean properties" 110 (110): 2005

      61 Lee, S., "Four major South Korea's rivers using deep learning models" 15 (15): 1322-, 2018

      62 Kim, W., "Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region" 184 : 482-495, 2016

      63 Garcia, C. A. E., "Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans" 95 (95): 125-137, 2005

      64 Moses, W. J., "Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges" 4 (4): 045005-, 2009

      65 Siswanto, E., "Empirical ocean-color algorithms to retrieve chlorophylla, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas" 67 (67): 627-650, 2011

      66 Kahru, M., "Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current" 20 (20): 3423-3429, 1999

      67 Coste, P., "Development of the new generation of geostationary ocean color imager" International Society for Optics and Photonics 105620D-, 2017

      68 Gower, J., "Detection of intense plankton blooms using the 709nm band of the MERIS imaging spectrometer" 26 (26): 2005-2012, 2005

      69 Lee, Z., "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters" 41 (41): 5755-5772, 2002

      70 Maritorena, S., "Consistent merging of satellite ocean color data sets using a bio-optical model" 94 : 429-440, 2005

      71 Mitchell, B. G., "Coastal zone color scanner retrospective" 99 : 7291-7292, 1994

      72 Martinez, E., "Climate-driven basin-scale decadal oscillations of oceanic phytoplankton" 326 (326): 1253-1256, 2009

      73 Gitelson, A., "Chlorophyll estimation in the Southeastern Mediterranean using CZCS images: Adaptation of an algorithm and its validation" 9 (9): 283-290, 1996

      74 O'Reilly, J.E., "Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6" 229 : 32-47, 2019

      75 Falkowski, P., "Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass" 7 (7): 715-731, 1985

      76 Hu, C., "Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference" 117 (117): 2012

      77 Hu, C., "Biophysical applications of satellite remote sensing" Springer 171-203, 2014

      78 Magnuson, A., "Bio-optical model for Chesapeake Bay and Middle Atlantic Bight" 61 : 403-424, 2004

      79 Hu, C., "Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method" 74 (74): 195-206, 2000

      80 Yoon, J.-E., "Assessment of satellite-based chlorophyll-a algorithms in eutrophic Korean coastal waters: Jinhae Bay case study" 6 : 359-, 2019

      81 Tilstone, G. H., "Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea" 65 : 14-26, 2013

      82 Boucher, J., "Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring" 28 (28): 1044-1054, 2018

      83 Guallar, C., "Artificial neural network approach to population dynamics of harmful algal blooms in Alfacs Bay (NW Mediterranean): Case studies of Karlodinium and Pseudo-nitzschia" 338 : 37-50, 2016

      84 Kwiatkowska, E.J., "Application of machine learning techniques towards the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data" 41 : 2844-2860, 2003

      85 Urbanski, J. A., "Application of Landsat 8 imagery to regional-scale assessment of lake water quality" 51 : 28-36, 2016

      86 Sathyendranath, S., "Analytic model of ocean color" 36 (36): 2620-2629, 1997

      87 Morel, A., "Analysis of variations in ocean color 1" 22 (22): 709-722, 1977

      88 Hooker, S. B., "An overview of SeaWiFS and ocean color" NASA Goddard Space Flight Center 24-, 1992

      89 Werdell, P.J., "An improved biooptical data set for ocean color algorithm development and satellite data product validation" 98 (98): 122-140, 2005

      90 Darecki, M., "An Evaluation of MODIS and SeaWiFS Bio-Optical Algorithms in the Baltic Sea" 89 : 326-350, 2004

      91 Bowers, D. G., "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll" 17 (17): 2449-2460, 1996

      92 Lim, H., "AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, validation and merged products" 10 (10): 699-, 2018

      93 Sathyendranath, S., "A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters" 10 (10): 1373-1394, 1989

      94 Blondeau-Patissier, D., "A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans" 123 : 123-144, 2014

      95 Strickland, J.D., "A practical handbook of seawater analysis" 310-, 1972

      96 Yentsch, C.S., "A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence" 10 (10): 221-231, 1963

      97 Wilson, C., "A global view of biophysical coupling from SeaWiFS and TOPEX satellite data, 1997-2001" 29 (29): 1257-, 2002

      98 McClain, C. R., "A decade of satellite ocean color observations" 1 : 19-42, 2009

      99 Gitelson, A., "A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters" 4 (4): 045003-, 2009

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-19 학회명변경 영문명 : 미등록 -> The Korean Earth Science Society KCI등재
      2007-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.47 0.49
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.51 0.52 0.909 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼