RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Lyophilization stabilizes clinical‐stage core‐crosslinked polymeric micelles to overcome cold chain supply challenges

      한글로보기

      https://www.riss.kr/link?id=O112636880

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      CriPec technology enables the generation of drug‐entrapped biodegradable core‐crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)‐entrapped CCPM, also referred to as ...

      CriPec technology enables the generation of drug‐entrapped biodegradable core‐crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)‐entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing. CPC634 is currently stored (shelf life > 5 years) and shipped as a frozen aqueous dispersion at temperatures below −60°C, in order to prevent premature release of DTX and hydrolysis of the core‐crosslinks. Consequently, like other aqueous nanomedicine formulations, CPC634 relies on cold chain supply, which is unfavorable for commercialization. Lyophilization can help to bypass this issue.
      Freeze‐drying methodology for CCPM was developed by employing CPC634 as a model formulation, and sucrose and trehalose as cryoprotectants. We studied the residual moisture content and reconstitution behavior of the CPC634 freeze‐dried cake, as well as the size, polydispersity index, morphology, drug retention, and release kinetics of reconstituted CPC634. Subsequently, the freeze‐drying methodology was validated in an industrial setting, yielding a CPC634 freeze‐dried cake with a moisture content of less than 0.1 wt%. It was found that trehalose‐cryoprotected CPC634 could be rapidly reconstituted in less than 5 min at room temperature. Critical quality attributes such as size, morphology, drug retention, and release kinetics of trehalose‐cryoprotected freeze‐dried CPC634 upon reconstitution were identical to those of non‐freeze‐dried CPC634.
      Our findings provide proof‐of‐concept for the lyophilization of drug‐containing CCPM and our methodology is readily translatable to large‐scale manufacturing for future commercialization.
      We provide a systematically optimized freeze‐drying protocol for clinical‐stage docetaxel‐entrapped core‐crosslinked polymeric micelles (CPC634) identifying trehalose as the most suitable cryoprotectant. Our data, validated in an academic as well as industrial setting, demonstrate the feasibility of lyophilizing core‐crosslinked polymeric micelles which can be readily translatable to large‐scale production for the future commercialization of CriPec technology‐based core‐crosslinked polymeric micelles.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼