RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Icosahedral 상을 갖는 Mg-8Zn-1.6Y 합금의 크리프 거동에 미치는 Ca 첨가 영향 = The Effect of Ca Addition on Creep Behavior of As-cast Mg-8.0Zn-1.6Y Alloys with Icosahedral Phase

      한글로보기

      https://www.riss.kr/link?id=A106831750

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase i...

      The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase in the Ca content, indicating that an addition of Ca enhances the ignition resistance of the Mg-Zn-Y alloy. The as-cast microstructures of all tested alloys mainly consisted of the dendritic -Mg matrix and I-phase (Mg3Zn6Y) at the grain boundaries. In the Ca-added Mg8.0Zn-1.6Y alloys, the Ca2Mg6Zn3 phase forms, with this phase fraction increasing with an increase in the Ca contents. However, a high volume fraction of the Ca2Mg6Zn3 phase rather deteriorates the mechanical properties. Therefore, a moderate amount of Ca element in Mg-8.0Zn-1.6Y alloys is effective for improving the tensile and creep properties of the Mg-Zn-Y alloy. The Mg-8.0Zn1.6Y-0.3Ca alloy exhibits the highest tensile strength and the lowest creep strain among the alloys investigated in the present study. The creep resistance of Mg-Zn-Y-Ca alloys depends on the selection of the secondary solidification phase; i.e., when Ca2Mg6Zn3 forms in an alloy containing a high level of Ca, the creep resistance deteriorates because Ca2Mg6Zn3 is less stable than the I-phase at a high temperature

      더보기

      다국어 초록 (Multilingual Abstract)

      The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase i...

      The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase in the Ca content, indicating that an addition of Ca enhances the ignition resistance of the Mg-Zn-Y alloy. The as-cast microstructures of all tested alloys mainly consisted of the dendritic -Mg matrix and I-phase (Mg3Zn6Y) at the grain boundaries. In the Ca-added Mg8.0Zn-1.6Y alloys, the Ca2Mg6Zn3 phase forms, with this phase fraction increasing with an increase in the Ca contents. However, a high volume fraction of the Ca2Mg6Zn3 phase rather deteriorates the mechanical properties. Therefore, a moderate amount of Ca element in Mg-8.0Zn-1.6Y alloys is effective for improving the tensile and creep properties of the Mg-Zn-Y alloy. The Mg-8.0Zn1.6Y-0.3Ca alloy exhibits the highest tensile strength and the lowest creep strain among the alloys investigated in the present study. The creep resistance of Mg-Zn-Y-Ca alloys depends on the selection of the secondary solidification phase; i.e., when Ca2Mg6Zn3 forms in an alloy containing a high level of Ca, the creep resistance deteriorates because Ca2Mg6Zn3 is less stable than the I-phase at a high temperature.

      더보기

      참고문헌 (Reference)

      1 "https://www.magnesium-elektron.com/wp-content/uploads/2016/10/Elektron-RZ5_1.pdf"

      2 Jing B, "Microstructure and tensile creep behavior of Mg-4Al based Magnesium alloys with alkaline-earth elements Sr and Ca addition" 419 : 181-188, 2006

      3 Moreno IP, "Microstructural stability and creep of rareearth containing magnesium alloys" 48 : 1029-1034, 2003

      4 Zhang L, "Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field" 688 : 868-874, 2016

      5 Medina J, "Microstructural changes in an extruded Mg-Zn-Y alloy reinforced by quasicrystalline I-phase by small additions of calcium, manganese and ceriumrich mischmetal" 118 : 186-198, 2016

      6 Medina J, "Microstructural changes in an extruded Mg-Zn-Y alloy reinforced by quasicrystalline I-phase by small additions of calcium, manganese and ceriumrich mischmetal" 118 : 186-198, 2016

      7 Froes FH, "Magnesium science technology and applications" 5 : 201-212, 1998

      8 Mordike BL, "Magnesium properties-applications-potential" 302 : 37-45, 2001

      9 Kim YM, "Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures" 65 : 958-961, 2011

      10 Kubok K, "Investigation of structures in as-cast alloys from the Mg-Zn-Ca system" 58 : 299-333, 2013

      1 "https://www.magnesium-elektron.com/wp-content/uploads/2016/10/Elektron-RZ5_1.pdf"

      2 Jing B, "Microstructure and tensile creep behavior of Mg-4Al based Magnesium alloys with alkaline-earth elements Sr and Ca addition" 419 : 181-188, 2006

      3 Moreno IP, "Microstructural stability and creep of rareearth containing magnesium alloys" 48 : 1029-1034, 2003

      4 Zhang L, "Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field" 688 : 868-874, 2016

      5 Medina J, "Microstructural changes in an extruded Mg-Zn-Y alloy reinforced by quasicrystalline I-phase by small additions of calcium, manganese and ceriumrich mischmetal" 118 : 186-198, 2016

      6 Medina J, "Microstructural changes in an extruded Mg-Zn-Y alloy reinforced by quasicrystalline I-phase by small additions of calcium, manganese and ceriumrich mischmetal" 118 : 186-198, 2016

      7 Froes FH, "Magnesium science technology and applications" 5 : 201-212, 1998

      8 Mordike BL, "Magnesium properties-applications-potential" 302 : 37-45, 2001

      9 Kim YM, "Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures" 65 : 958-961, 2011

      10 Kubok K, "Investigation of structures in as-cast alloys from the Mg-Zn-Ca system" 58 : 299-333, 2013

      11 Langelier B, "Evolution of precipitation during non-isothermal ageing of an Mg-Ca-Zn alloy with high Ca content" 538 : 246-251, 2012

      12 Uchida H, "Estimation of creep deformation behavior in Mg-Al alloys by using theta projection method" 45 : 572-577, 1995

      13 Dinodi N, "Electrochemical investigations on the corrosion behavior of magnesium alloy ZE41 in a combined medium of chloride and sulphate" 1 : 201-209, 2013

      14 Zhao P, "Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys" 444 : 318-326, 2007

      15 Jingfeng W, "Effects of phase composition on the mechanical properties and damping capacities of asextruded Mg-Zn-Y-Zr alloys" 509 : 8567-8572, 2011

      16 Zhiqiang Z, "Effects of phase composition and content on the 6 microstructures and mechanical properties of high strength Mg-Y-Zn-Zr alloys" 88 : 915-923, 2015

      17 Naghdi F, "Effect of solution treatment on the microstructural evolution and mechanical properties of an aged Mg-4Zn-0. 3Ca alloy" 631 : 144-152, 2015

      18 Chen J, "Effect of Y and Ca addition on the creep behaviors of AZ61magnesium alloys" 686 : 375-383, 2016

      19 Dinga R, "Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy" 527 : 3777-3784, 2010

      20 Ha SH, "Effect of CaO on oxidation resistance and microstructure of pure Mg" 49 : 1081-1083, 2008

      21 Kwak TY, "Effect of Ca and CaO on the microstructure and hot compressive deformation behavior of Mg-9. 5Zn-2. 0Y alloy" 658 : 146-156, 2015

      22 Bae DH, "Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles" 50 : 2343-2356, 2002

      23 Alok S, "Crystallographic orientations and interfaces of icosahedral quasicrystalline phase growing on cubic W phase in Mg-Zn-Y alloys" 397 : 22-34, 2005

      24 Regev M, "Creep studies of AZ91D pressure die casting" 234 (234): 123-126, 1997

      25 Alizadeh R, "Creep mechanisms in an Mg-4Zn alloy in the as-cast and aged conditions" 564 : 423-430, 2013

      26 Bae DH, "Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys" 342 : 445-450, 2002

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-11-19 학술지명변경 외국어명 : Journal of the Korean Foundrymen`s Society -> Journal of Korea Foundry Society KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.14
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.13 0.14 0.348 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼