RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Land surface remote sensing in continental hydrology

      한글로보기

      https://www.riss.kr/link?id=M14635465

      • 저자
      • 발행사항

        London : ISTE Press ; Kidlington, Oxford, UK : Elsevier, 2016

      • 발행연도

        2016

      • 작성언어

        영어

      • 주제어
      • DDC

        551.5 판사항(23)

      • ISBN

        9781785481048
        1785481045

      • 자료형태

        단행본(다권본)

      • 발행국(도시)

        영국

      • 서명/저자사항

        Land surface remote sensing in continental hydrology / edited by Nicolas Baghdadi, Mehrez Zribi

      • 형태사항

        xliii, 458 pages : illustrations ; 24 cm

      • 총서사항

        Remote sensing observations of continental surfaces set Remote sensing observations of continental surfaces set

      • 일반주기명

        Includes bibliographical refarences and index

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 이화여자대학교 도서관 소장기관정보 Deep Link
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • Foreword = xiii
      • Acronyms = xvii
      • Introduction = xli
      • Chapter 1 Characterization of Soil Surface Properties Using Radar Remote Sensing / Nicolas Baghdadi ; Mehrez Zribi = 1
      • CONTENTS
      • Foreword = xiii
      • Acronyms = xvii
      • Introduction = xli
      • Chapter 1 Characterization of Soil Surface Properties Using Radar Remote Sensing / Nicolas Baghdadi ; Mehrez Zribi = 1
      • 1.1 Thematic introduction = 1
      • 1.2 Description of soil parameters = 3
      • 1.2.1 Soil roughness = 3
      • 1.2.2 Soil surface moisture = 7
      • 1.3 Radar signal sensitivity to soil parameters = 9
      • 1.3.1 Sensitivity of radar signal to soil roughness = 9
      • 1.3.2 Sensitivity of the radar signal to soil moisture = 11
      • 1.3.3 Soil salinity = 13
      • 1.3.4 Soil texture composition = 14
      • 1.4 Modeling of radar backscattering on bare soil = 15
      • 1.4.1 Description of the IEM = 16
      • 1.4.2 Description of the Dubois model = 18
      • 1.4.3 Description of the Oh model = 19
      • 1.4.4 Numerical modeling = 19
      • 1.5 Estimation of soil parameters at plot scale based on high and very high spatial resolution data = 21
      • 1.5.1 Case of bare soil = 21
      • 1.5.2 Case of soil with vegetation cover = 29
      • 1.6 Estimation of soil parameters with medium spatial resolution = 30
      • 1.7 Prospects = 31
      • 1.8 Key points = 33
      • 1.9 Bibliography = 34
      • Chapter 2 Estimation of Soil Water Conditions Using Passive Microwave Remote Sensing / Ramata Magagi ; Yann Kerr ; Jean-Pierre Wigneron = 41
      • 2.1 General introduction = 41
      • 2.2 Principle of passive microwave soil moisture estimation = 43
      • 2.2.1 Effect of surface roughness on the brightness temperature of bare soil = 44
      • 2.2.2 Effect of vegetation on the brightness temperature of vegetation-covered soil = 44
      • 2.2.3 Effect of soil moisture on the signal's sensitivity to surface roughness and vegetation = 46
      • 2.2.4 Penetration depth of the signal = 46
      • 2.3 Methods for surface soil moisture estimation = 48
      • 2.3.1 Inversion of direct models : 1-P, 2-P, and N-P inversion of the L-MEB model = 49
      • 2.3.2 Statistical approaches = 51
      • 2.3.3 Explicit inversions = 52
      • 2.3.4 Inversion problems = 53
      • 2.4 Soil moisture products derived from passive microwave space-borne observations = 55
      • 2.4.1 Spatial passive microwave remote sensing evolution for soil moisture estimation = 55
      • 2.4.2 Validation and representativeness of the large scale AMSR-E, SMOS, and SMAP SM retrievals = 57
      • 2.4.3 Example of SMOS soil moisture evaluation over the agricultural sites of CanEx-SM10 and SMAPVEX12 = 58
      • 2.4.4 Qualitative analysis of the soil moisture values estimated by SMOS and AMSR-E over the agricultural and forest sites of CanEx-SM10 = 59
      • 2.5 Methods for disaggregating satellite soil moisture products derived from passive microwave observations = 61
      • 2.6 Other moisture products derived from passive microwave observations = 64
      • 2.6.1 Moisture index = 64
      • 2.6.2 Root zone moisture = 65
      • 2.7 Principal applications = 66
      • 2.7.1 Applications in meteorology (NWP), climate modeling, drought = 66
      • 2.7.2 Applications in hydrology, flood risks, agriculture, forestry, etc. = 67
      • 2.7.3 Applications in Nordic environments = 67
      • 2.8 Conclusion = 67
      • 2.9 Key points = 68
      • 2.10 Acknowledgments = 69
      • 2.11 Bibliography = 69
      • Chapter 3 Using Satellite Scatterometers to Monitor Continental Surfaces / Pierre-Louis Frison ; Lionel Jarlan ; Eric Mougin = 79
      • 3.1 Introduction = 79
      • 3.2 Principle of acquisition for scatterometers = 80
      • 3.3 The main scatterometers = 85
      • 3.3.1 Fixed antenna scatterometers = 85
      • 3.3.2 Rotating antennae scatterometers : SeaWinds = 88
      • 3.4 Thematic applications = 89
      • 3.4.1 Surface-water hydrology = 92
      • 3.4.2 Monitoring vegetation = 98
      • 3.5 Conclusions and prospects = 105
      • 3.6 Key points = 106
      • 3.7 Bibliography = 107
      • Chapter 4 Optical Remote Sensing of Snow Cover / Marie Dumont ; Simon Gascoin = 115
      • 4.1 Introduction: the importance of snow cover = 115
      • 4.2 Optical properties of snow = 116
      • 4.3 Properties of snow cover observable by optical remote sensing = 119
      • 4.3.1 The presence of snow = 119
      • 4.3.2 Albedo and optical radius, light-absorbing impurities = 124
      • 4.4 The use of data produced from snow-covered surfaces in hydrology = 126
      • 4.4.1 What can be done about clouds? = 126
      • 4.4.2 Generating hydro-climatic indicators = 128
      • 4.4.3 Hydrological modeling = 129
      • 4.5 Possibilities = 130
      • 4.6 Key points = 132
      • 4.7 Bibliography = 132
      • Chapter 5 Snow Characterization Using Radar Imaging / Monique Bernier ; Jean-Pierre Dedieu ; Yannick Duguay = 139
      • 5.1 Introduction = 139
      • 5.2 Radar interaction and snow cover = 140
      • 5.2.1 Physical characterization of snow = 140
      • 5.2.2 Electromagnetic modeling of radar signals = 146
      • 5.2.3 The polarimetric study of snow = 153
      • 5.3 Mapping snow cover = 158
      • 5.3.1 Mapping the extent of snow coverage = 158
      • 5.3.2 Mapping snow-water equivalent = 160
      • 5.3.3 Specific environments = 166
      • 5.4 Current users and future prospects = 174
      • 5.5 Key points = 175
      • 5.6 Bibliography = 176
      • Chapter 6 Spatial Altimetry and Continental Waters / Jean-Francois Cretaux ; Stephane Calmant = 183
      • 6.1 Introduction = 183
      • 6.2 Some generalities concerning the use of satellite altimetry for hydrology = 187
      • 6.3 Case studies using radar and laser altimetry = 191
      • 6.3.1 Lakes in East Africa = 191
      • 6.3.2 Tibetan lakes = 195
      • 6.4 Using altimetry to estimate river flow = 204
      • 6.5 Impact of adjustments and uses of altimetry = 210
      • 6.5.1 The context and the role of spatial altimetry = 210
      • 6.5.2 Case studies with radar altimetry = 212
      • 6.6 Conclusion and prospects = 217
      • 6.7 Key points = 222
      • 6.8 Bibliography = 222
      • Chapter 7 Radar Altimetry for Monitoring the Antarctic Ice Sheet / Frederique Remy = 231
      • 7.1 Introduction = 231
      • 7.2 Antarctica = 232
      • 7.2.1 The continent of superlatives = 232
      • 7.2.2 The Antarctic machine = 234
      • 7.2.3 What and how to observe? = 235
      • 7.3 Polar altimetry = 237
      • 7.3.1 Some specifics of altimetry on polar ice caps = 237
      • 7.3.2 Methodology of evaluating a time series for measuring height = 239
      • 7.4 Contribution to climatology = 240
      • 7.5 Antarctica in a stationary state = 243
      • 7.5.1 Surface topography = 243
      • 7.5.2 Constraints of the models = 245
      • 7.6 Temporal variations = 246
      • 7.6.1 Very different times and signals = 246
      • 7.6.2 Lake draining = 247
      • 7.6.3 Global mass balance = 249
      • 7.6.4 Acceleration of outlet glaciers : can they bolt? = 250
      • 7.7 Summary and perspective = 251
      • 7.8 Key points = 252
      • 7.9 Bibliography = 252
      • Chapter 8 Monitoring Water Mass Redistributions on Land and Polar Ice Sheets using the GRACE Gravimetry from Space Mission / Frederic Frappart ; Guillaume Ramillien ; Lucia Seoane = 255
      • 8.1 Introduction = 255
      • 8.2 Post-processing techniques for global solutions = 256
      • 8.2.1 Empirical methods = 257
      • 8.2.2 Statistical methods = 259
      • 8.2.3 The inverse methods = 262
      • 8.3 Regional approaches = 263
      • 8.3.1 Mascons = 263
      • 8.3.2 The regional method = 264
      • 8.4 Applications = 265
      • 8.4.1 Applications in land hydrology = 265
      • 8.4.2 Applications in glaciology = 272
      • 8.5 Perspectives = 275
      • 8.6 Key points = 276
      • 8.7 Bibliography = 276
      • Chapter 9 Applications of GNSS-R in Continental Hydrology / Erwan Motte ; Alejandro Egido ; Nicolas Roussel ; Karen Boniface ; Frederic Frappart = 281
      • 9.1 Introduction = 281
      • 9.1.1 History = 281
      • 9.1.2 Chapter outline = 282
      • 9.2 Background on measurement and GNSS-R observable techniques = 283
      • 9.2.1 GNSS-R by waveform analysis = 284
      • 9.2.2 GNSS-R by analysis of changes in the signal-to-noise ratio = 289
      • 9.3 Altimetry = 291
      • 9.3.1 Measuring the snowpack = 292
      • 9.3.2 Measuring the water level = 296
      • 9.4 Soil moisture = 302
      • 9.4.1 cGNSS-R methodology (bistatic scatter) = 303
      • 9.4.2 Example of monitoring the moisture level of an agricultural plot using cGNSS-R = 307
      • 9.4.3 Monitoring soil moisture by IPT : methodology = 308
      • 9.4.4 Example of monitoring the moisture level of an agricultural field by IPT = 310
      • 9.5 Vegetation cover = 312
      • 9.5.1 Biomass estimation by cGNSS-R : theoretical aspects = 312
      • 9.5.2 Example of forest biomass estimation by cGNSS-R = 314
      • 9.5.3 Monitoring vegetation growth using IPT = 315
      • 9.6 Conclusions and perspectives = 315
      • 9.6.1 IPT network = 315
      • 9.6.2 Aerial/balloon measurements = 316
      • 9.6.3 Spaceborne measurements = 316
      • 9.7 Key points = 317
      • 9.8 Bibliography = 318
      • Chapter 10 Energy Balance of Continental Surfaces and the Use of Surface Temperature / Jean-Pierre Lagouarde ; Gilles Boulet = 323
      • 10.1 Introduction = 323
      • 10.2 Energy budget and surface temperature = 324
      • 10.2.1 Radiative budget = 325
      • 10.2.2 Convective fluxes = 326
      • 10.2.3 Soil conductive flux = 328
      • 10.2.4 Energy budget equation = 329
      • 10.2.5 Significance of surface temperature = 330
      • 10.3 Surface temperature data = 331
      • 10.3.1 Directional effects in thermal infrared = 332
      • 10.3.2 Impact of atmospheric turbulence on measurement uncertainty = 334
      • 10.3.3 Current data and their limitations : a need for new missions in the TIR domain = 336
      • 10.4 Estimating evapotranspiration = 337
      • 10.4.1 Residual methods = 338
      • 10.4.2 Contextual methods = 341
      • 10.4.3 Assimilation of TIR data = 343
      • 10.4.4 Operational methods adapted to the availability of satellite data = 344
      • 10.5 Other applications = 345
      • 10.5.1 Agriculture and forestry = 346
      • 10.5.2 Climate monitoring and health of ecosystems = 350
      • 10.5.3 Biogeochemical cycles and soil pollution = 351
      • 10.5.4 Hydrology = 351
      • 10.6 Prospects = 353
      • 10.7 Key points = 353
      • 10.8 Bibliography = 354
      • Chapter 11 Remote Sensing Data Assimilation : Applications to Catchment Hydrology / Delphine Leroux ; Thierry Pellarin = 363
      • 11.1 Introduction = 363
      • 11.2 Hydrological models = 364
      • 11.3 Satellite data available for assimilation = 365
      • 11.4 Description of data assimilation = 367
      • 11.5 Examples of assimilation in hydrological models = 373
      • 11.5.1 Assimilation of surface soil moisture = 373
      • 11.5.2 Assimilation of river water level = 378
      • 11.5.3 Soil water storage assimilation = 381
      • 11.6 Application example : assimilation of SMOS's soil moisture in the DHSVM hydrological model, on the Oueme catchment, Benin = 384
      • 11.6.1 Study area and hydrological model = 384
      • 11.6.2 Assimilation of SMOS surface soil moisture in the hydrological model = 387
      • 11.7 A favorable future to assimilation in hydrology = 393
      • 11.8 Key points = 394
      • 11.9 Bibliography = 394
      • Chapter 12 Satellite Data Assimilation: Application to the Water and Carbon Cycles / Jean-Christophe Calvet ; Patricia De Rosnay ; Alina L. Barbu ; Souhail Boussetta = 401
      • 12.1 Assimilation: what is the purpose? = 401
      • 12.2 Analyses of the vegetation and soil moisture for numerical weather prediction = 405
      • 12.3 Water : from the soil to the river = 413
      • 12.4 Natural sinks and sources of CO₂ = 419
      • 12.5 Conclusions and perspectives = 422
      • 12.6 Key points = 422
      • 12.7 Bibliography = 423
      • Glossary = 429
      • List of Authors = 449
      • Index = 453
      • Scientific Committee = 457
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼