RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      이미지 생성 AI 파인튜닝과 활용 사례 - 실내 공간 상세 스타일 키워드를 중심으로 - = Image Gen AI-based Model Fine-Tuning and Design Application- Focusing on Detailed Interior Design Style Keywords -

      한글로보기

      https://www.riss.kr/link?id=A108850546

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper explores the potential of Generative AI in the field of interior architecture, with a specific focus on implementing fine-tuning models based on various interior design styles. It highlights that spaces have unique preferences influenced by culture, region, and users, leading to evolving design styles. However, the base models of image-generation AI do not always reflect the changes and latest trends in interior design styles. Model fine-tuning of image-generation AI enables the visualization of spaces incorporating various interior design styles. The study evaluates the base model's performance on 25 diverse design styles, selecting styles for further training based on the results. This fine-tuning involves three main steps: data preparation and preprocessing, text alignment and hyperparameter optimization, and model training and construction. The findings show that fine-tuning effectively represents styles missed by the base model, generating high-quality images. It accurately portrays style characteristics and keywords, offering versatile design possibilities. This research enhances space visualization while accommodating diverse interior design styles and user preferences. It provides a practical mechanism for generating alternative designs to facilitate practical comparisons in interior architecture. Additionally, it highlights the potential application of Generative AI in various fields beyond interior architecture.
      번역하기

      This paper explores the potential of Generative AI in the field of interior architecture, with a specific focus on implementing fine-tuning models based on various interior design styles. It highlights that spaces have unique preferences influenced by...

      This paper explores the potential of Generative AI in the field of interior architecture, with a specific focus on implementing fine-tuning models based on various interior design styles. It highlights that spaces have unique preferences influenced by culture, region, and users, leading to evolving design styles. However, the base models of image-generation AI do not always reflect the changes and latest trends in interior design styles. Model fine-tuning of image-generation AI enables the visualization of spaces incorporating various interior design styles. The study evaluates the base model's performance on 25 diverse design styles, selecting styles for further training based on the results. This fine-tuning involves three main steps: data preparation and preprocessing, text alignment and hyperparameter optimization, and model training and construction. The findings show that fine-tuning effectively represents styles missed by the base model, generating high-quality images. It accurately portrays style characteristics and keywords, offering versatile design possibilities. This research enhances space visualization while accommodating diverse interior design styles and user preferences. It provides a practical mechanism for generating alternative designs to facilitate practical comparisons in interior architecture. Additionally, it highlights the potential application of Generative AI in various fields beyond interior architecture.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼