RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      One‐Step Covalent Immobilization of β‐Cyclodextrin on sp2 Carbon Surfaces for Selective Trace Amount Probing of Guests

      한글로보기

      https://www.riss.kr/link?id=O113278516

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The modification of solid surfaces with supramolecular hosts is a powerful method to tailor interfacial properties and confer chemical selectivity, but often involves multistep protocols that hinder facile upscaling. Here, the one‐step covalent modi...

      The modification of solid surfaces with supramolecular hosts is a powerful method to tailor interfacial properties and confer chemical selectivity, but often involves multistep protocols that hinder facile upscaling. Here, the one‐step covalent modification of highly oriented pyrolytic graphite (HOPG) with a β‐cyclodextrin (β‐CD) derivative, which efficiently forms inclusion complexes with hydrophobic guests of suitable size, is demonstrated. The grafted β‐CD‐HOPG surface is investigated toward electrochemical detection of ferrocene and dopamine. The enrichment of the analytes at the electrode surface, through inclusion in β‐CD, leads to an enhanced electrochemical response and an improved detection limit. Furthermore, the modified β‐CD‐HOPG electrode discriminates analytes that form host–guest complexes with β‐CD against a 100‐fold higher background of electroactive substances that do not. Atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy confirm the covalent nature of the modification and reveal high stability toward solvent rinsing, ultrasonication, and temperatures up to 140 °C. The one‐step covalent modification therefore holds substantial promise for the routine production of inexpensive, yet robust and highly performant electrochemical sensors. Beyond electrochemical sensor development, our strategy is valuable to prepare materials where accurate spatial positioning of functional units and efficient current collection are crucial, e.g. in photoelectrodes or electrocatalysts.
      A simple, one‐step procedure is demonstrated to attach β‐cyclodextrin to a graphite surface. The modified surface can be used as an electrochemical sensor to detect hydrophobic molecules that fit in the cavity of β‐cyclodextrin. Much higher concentrations of hydrophilic molecules, which do not enter the cavity, do not hinder the detection.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼