The modification of perfluorinated proton exchange membranes (e.g. Nafion) utilizing a layer by layer (LbL) electrostatic assembly of oppositely charged biophilic polymers such as poly-l-lysine as positive layer and dsDNA as a negative layer ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
다국어 초록 (Multilingual Abstract)
The modification of perfluorinated proton exchange membranes (e.g. Nafion) utilizing a layer by layer (LbL) electrostatic assembly of oppositely charged biophilic polymers such as poly-l-lysine as positive layer and dsDNA as a negative layer ...
The modification of perfluorinated proton exchange membranes (e.g. Nafion) utilizing a layer by layer (LbL) electrostatic assembly of oppositely charged biophilic polymers such as poly-l-lysine as positive layer and dsDNA as a negative layer is developed to protect the interface between the catalyst layer and the membrane in a low temperature fuel cell. Various physicochemical measurements including water uptake, proton conductivity and surface tension were investigated for both the as-received Nafion and the biopolymeric LbL modified Nafion. The smaller water contact angle and the less swelling characteristics of the biopolymer modified Nafion membrane was founded compared to that of as-received Nafion. This clearly indicates that the more hydrophilic surface of biopolymeric layers on Nafion plays an important role in the enhanced dimensional stability. In addition, a potential hypothesis explaining the higher proton conductivity from the LbL biopolymeric film coated Nafion is suggested.
Surface-adsorbate-induced fluorescence-type Raman background of Pb(Zr0.4Ti0.6)O3 nanotubes
Controlling the spectrum of high-power terahertz radiation from a laser-driven plasma wave
The characteristics of lysine-mediated self-assembly of gold nanoparticles on the ITO glass
Optical characterizations of GaAs-based spin light emitting diodes using Fe3O4 spin injectors