RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Effect of Variable Thermo-Physical Properties of LiBr-H2O Solution on the Performance Parameters of Horizontal Tube Absorber

      한글로보기

      https://www.riss.kr/link?id=A106363439

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Absorber is the most important component in LiBr-H2O absorption systems as its operating performance directly influences the performance of the whole system. In simulating absorption heat and mass transfer in horizontal tube absorber, many authors, fo...

      Absorber is the most important component in LiBr-H2O absorption systems as its operating performance directly influences the performance of the whole system. In simulating absorption heat and mass transfer in horizontal tube absorber, many authors, for simplicity, make some assumptions. One of these assumptions is that the thermo-physical properties of the solution are constant across the absorber. In this paper, LiBr-H2O horizontal tube absorber was simulated with constant and variable thermo-physical properties and a comparison between the performance parameters (solution concentration, solution temperature, absorber heat duty and rate of vapor absorption) was made. Two solution flow rates are used in this simulation (Γ=0.0375 kgs −1 m −1 and Γ=0.025 Γ=0.025kgs −1 m −1) and a computer program was developed to simulate the two cases (constant and variable thermo-physical properties). The comparison results show that, in case of variable thermo-physical properties, the heat duty and vapor absorption rate are less than those in case of constant thermo-physical properties whereas solution concentration and temperature are slightly greater. Also, it is found that increasing solution volume flow rate increases the difference in heat duty and absorption rate and slightly decreases the difference in solution concentration and temperature.

      더보기

      참고문헌 (Reference)

      1 G. Grossman, "Simultaneous heat and mass transfer in film absorption under laminar flow" 26 : 357-371, 1983

      2 A. Khalid Joudi, "Simulation of a simple absorption system" 42 : 1575-1605, 2001

      3 J. D. Killion, "Pendant droplet motion for absorption on horizontal tube banks" 47 : 4403-4414, 2004

      4 V. Subramaniam, "Numerical study of heat and mass transfer in Lithium Bromide-water falling films and droplets" 40 : 211-226, 2014

      5 J. Chen, "Numerical simulation of horizontal tube bundle falling film flow pattern transformation" 73 : 62-68, 2015

      6 H. Zhanga, "Numerical and experimental investigation on the heat and mass transfer of falling film and droplet regimes in horizontal tubes LiBr-H2O absorber" 146 : 752-767, 2019

      7 P. Huliquist, "Numerical Methods for Engineering and Computer Scientist" AddisonWesley 1988

      8 I. Kyung, "Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube" 30 : 591-600, 2007

      9 I. Kyung, "Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube" 30 : 591-600, 2007

      10 R. T. Wassenaar, "Measured and predicted effect of flow rate and tube spacing on horizontal tube absorber performance" 5 : 347-355, 1996

      1 G. Grossman, "Simultaneous heat and mass transfer in film absorption under laminar flow" 26 : 357-371, 1983

      2 A. Khalid Joudi, "Simulation of a simple absorption system" 42 : 1575-1605, 2001

      3 J. D. Killion, "Pendant droplet motion for absorption on horizontal tube banks" 47 : 4403-4414, 2004

      4 V. Subramaniam, "Numerical study of heat and mass transfer in Lithium Bromide-water falling films and droplets" 40 : 211-226, 2014

      5 J. Chen, "Numerical simulation of horizontal tube bundle falling film flow pattern transformation" 73 : 62-68, 2015

      6 H. Zhanga, "Numerical and experimental investigation on the heat and mass transfer of falling film and droplet regimes in horizontal tubes LiBr-H2O absorber" 146 : 752-767, 2019

      7 P. Huliquist, "Numerical Methods for Engineering and Computer Scientist" AddisonWesley 1988

      8 I. Kyung, "Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube" 30 : 591-600, 2007

      9 I. Kyung, "Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube" 30 : 591-600, 2007

      10 R. T. Wassenaar, "Measured and predicted effect of flow rate and tube spacing on horizontal tube absorber performance" 5 : 347-355, 1996

      11 "LiBrSSC (aqueous lithium bromide) Property Routines"

      12 S. Armou, "Heat and mass transfer enhancement in absorption of vapor in laminar liquid film by adding nano-particles" 10 : 1711-1720, 2017

      13 R. H. Wassenaar, "Falling film absorption: A discussion on three types of model and on the data reduction of absorption measurement" 4 : 34-38, 1995

      14 I. Kyunga, "Experimental verification of H2O/LiBr absorber bundle performance with smooth horizontal tubes" 30 : 582-590, 2007

      15 S. Mojtaba Hosseinnia, "CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr — Drop and jet modes" 115 : 860-873, 2017

      16 J. Ge, "Asymmetric distribution of falling film solution flowing on hydrophilic horizontal round tube" 8 : 83-92, 2007

      17 X. Wang, "Absorption cooling : A review of lithium bromide-water chiller technologies" 2 : 193-213, 2009

      18 K. R. Ullah, "A review of solar thermal refrigeration and cooling methods" 24 : 499-513, 2013

      19 E. Rogdakis, "A realistic approach to model LiBr-H2O smooth falling film absorption on a vertical tube" 23 : 2269-2283, 2003

      20 V. D. Papaefthimiou, "A detailed analysis of water-vapor absorption in LiBr-H2O solution on a cooled horizontal tube" 26 : 2095-2102, 2006

      21 J. D. Killion, "A critical review of models of coupled heat and mass transfer in falling-film absorption" 24 : 755-797, 2001

      22 R. H. Wassenaar, "A comparison of 4 absorber models" Delft University of Technology 1992

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.56 0.56 0.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.4 0.34 0.535 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼