RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Mobile radio channels

      한글로보기

      https://www.riss.kr/link?id=M12980287

      • 저자
      • 발행사항

        Chichester, West Sussex, U.K. : Wiley, 2012

      • 발행연도

        2012

      • 작성언어

        영어

      • 주제어
      • DDC

        621.3845 판사항(21)

      • ISBN

        9780470517475 (cloth)
        0470517476 (cloth)
        9781119974123 (ePDF)
        1119974127 (ePDF)
        9781119974116 (oBook)
        1119974119 (oBook)
        9781119975250 (ePub)
        1119975255 (ePub)
        9781119975267 (Mobi)
        1119975263 (Mobi)

      • 자료형태

        일반단행본

      • 발행국(도시)

        영국

      • 서명/저자사항

        Mobile radio channels / Matthias Pätzold

      • 판사항

        2nd ed

      • 형태사항

        xxxi, 583 p. : ill. ; 26 cm

      • 일반주기명

        Includes bibliographical references (p. [553]-569) and index

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 국립한밭대학교 도서관 소장기관정보
        • 서강대학교 도서관 소장기관정보 Deep Link
        • 인하대학교 도서관 소장기관정보
        • 청주대학교 도서관 소장기관정보
        • 호서대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • 자료제공 : aladin
      • Preface to the Second Edition xi List of Acronyms xv List of Symbols xix 1 Introduction 1 1.1 The Evolution of Mobile Radio Systems 1 1.2 Basic Knowledge of Mobile Radio Channels 8 1.3 Structure of this Book 12 2 Random Variables, Stochastic Processes, and Deterministic Signals 17 2.1 Random Variables 17 2.1.1 Basic Definitions of Probability Theory 17 2.1.2 Important Probability Density Functions 24 2.1.3 Functions of Random Variables 35 2.2 Stochastic Processes 37 2.2.1 Stationary Processes 40 2.2.2 Ergodic Processes 42 2.2.3 Level-Crossing Rate and Average Duration of Fades 43 2.2.4 Linear Systems with Stochastic Inputs 45 2.3 Deterministic Signals 48 2.3.1 Deterministic Continuous-Time Signals 48 2.3.2 Deterministic Discrete-Time Signals 50 2.4 Further Reading 52 Appendix 2.A Derivation of Rice’s General Formula for the Level-Crossing Rate 52 3 Rayleigh and Rice Channels 55 3.1 System Theoretical Description of Multipath Channels 56 3.2 Formal Description of Rayleigh and Rice Channels 61 3.3 Elementary Properties of Rayleigh and Rice Channels 62 3.3.1 Autocorrelation Function and Spectrum of the Complex Envelope 62 3.3.2 Autocorrelation Function and Spectrum of the Envelope 65 3.3.3 Autocorrelation Function and Spectrum of the Squared Envelope 67 3.4 Statistical Properties of Rayleigh and Rice Channels 69 3.4.1 Probability Density Function of the Envelope and the Phase 70 3.4.2 Probability Density Function of the Squared Envelope 72 3.4.3 Level-Crossing Rate and Average Duration of Fades 73 3.4.4 The Statistics of the Fading Intervals of Rayleigh Channels 77 3.5 Further Reading 84 Appendix 3.A Derivation of the Jakes Power Spectral Density and the Corresponding Autocorrelation Function 84 Appendix 3.B Derivation of the Autocorrelation Function of the Envelope 88 Appendix 3.C Derivation of the Autocovariance Spectrum of the Envelope Under Isotropic Scattering Conditions 90 Appendix 3.D Derivation of the Level-Crossing Rate of Rice Processes with Different Spectral Shapes of the Underlying Gaussian Random Processes 91 4 Introduction to Sum-of-Sinusoids Channel Models 95 4.1 Principle of Deterministic Channel Modelling 96 4.2 Elementary Properties of Deterministic Sum-of-Sinusoids Processes 102 4.3 Statistical Properties of Deterministic Sum-of-Sinusoids Processes 107 4.3.1 Probability Density Function of the Envelope and the Phase 108 4.3.2 Level-Crossing Rate and Average Duration of Fades 115 4.3.3 Statistics of the Fading Intervals at Low Signal Levels 120 4.3.4 Stationarity and Ergodicity of Sum-of-Sinusoids Processes 122 4.4 Classes of Sum-of-Sinusoids Processes 123 4.5 Basics of Sum-of-Cisoids Channel Models 126 4.5.1 Elementary Properties of Stochastic Sum-of-Cisoids Processes 127 4.5.2 Probability Density Function of the Envelope and Phase 129 4.6 Criteria for the Performance Evaluation 135 4.7 Further Reading 135 Appendix 4.A Derivation of the Autocorrelation Function of the Squared Envelope of Complex Deterministic Gaussian Processes 136 Appendix 4.B Derivation of the Exact Solution of the Level-Crossing Rate and the Average Duration of Fades of Deterministic Rice Processes 137 5 Parametrization of Sum-of-Sinusoids Channel Models 149 5.1 Methods for Computing the Doppler Frequencies and Gains 151 5.1.1 Method of Equal Distances (MED) 151 5.1.2 Mean-Square-Error Method (MSEM) 157 5.1.3 Method of Equal Areas (MEA) 162 5.1.4 Monte Carlo Method (MCM) 170 5.1.5 Jakes Method (JM) 178 5.1.6 Lp-Norm Method (LPNM) 189 5.1.7 Method of Exact Doppler Spread (MEDS) 201 5.1.8 Randomized Method of Exact Doppler Spread (RMEDS) 205 5.1.9 Method of Exact Doppler Spread with Set Partitioning (MEDS-SP) 207 5.2 Methods for Computing the Phases 212 5.3 Fading Intervals of Deterministic Rayleigh Processes 214 5.4 Parametrization of Sum-of-Cisoids Channel Models 222 5.4.1 Problem Description 222 5.4.2 Extended Method of Exact Doppler Spread (EMEDS) 222 5.4.3 Lp-Norm Method (LPNM) 224 5.4.4 Generalized Method of Equal Areas (GMEA) 225 5.4.5 Performance Analysis 228 5.5 Concluding Remarks and Further Reading 234 Appendix 5.A Analysis of the Relative Model Error by Using the Monte Carlo Method 236 Appendix 5.B Proof of the Convergence of the Sample Mean Autocorrelation Function by Using the MEDS-SP 238 Appendix 5.C Proof of the Condition for Uncorrelated Inphase and Quadrature Components of SOC Processes 239 6 Frequency-Nonselective Channel Models 241 6.1 The Extended Suzuki Process of Type I 243 6.1.1 Modelling and Analysis of Short-Term Fading 243 6.1.2 Modelling and Analysis of Long-Term Fading 254 6.1.3 The Stochastic Extended Suzuki Process of Type I 257 6.1.4 The Deterministic Extended Suzuki Process of Type I 262 6.1.5 Applications and Simulation Results 265 6.2 The Extended Suzuki Process of Type II 268 6.2.1 Modelling and Analysis of Short-Term Fading 269 6.2.2 The Stochastic Extended Suzuki Process of Type II 279 6.2.3 The Deterministic Extended Suzuki Process of Type II 283 6.2.4 Applications and Simulation Results 287 6.3 The Generalized Rice Process 290 6.3.1 The Stochastic Generalized Rice Process 291 6.3.2 The Deterministic Generalized Rice Process 295 6.3.3 Applications and Simulation Results 298 6.4 The Modified Loo Model 300 6.4.1 The Stochastic Modified Loo Model 300 6.4.2 The Deterministic Modified Loo Model 311 6.4.3 Applications and Simulation Results 317 6.5 Modelling of Nonstationary Land Mobile Satellite Channels 319 6.5.1 Lutz’s Two-State Channel Model 320 6.5.2 M-State Channel Models 322 6.5.3 Modelling of Nonstationary Real-World LMS Channels 323 7 Frequency-Selective Channel Models 335 7.1 The Ellipse Model of Parsons and Bajwa 336 7.2 System Theoretical Description of Frequency-Selective Channels 338 7.3 Frequency-Selective Stochastic Channel Models 342 7.3.1 Correlation Functions 342 7.3.2 The WSSUS Model According to Bello 344 7.3.3 The COST 207 Channel Models 352 7.3.4 The HIPERLAN/2 Channel Models 358 7.4 Frequency-Selective Sum-of-Sinusoids Channel Models 358 7.4.1 System Functions of Sum-of-Sinusoids Uncorrelated Scattering (SOSUS) Models 358 7.4.2 Correlation Functions and Power Spectral Densities of SOSUS Models 364 7.4.3 Delay Power Spectral Density, Doppler Power Spectral Density, and Characteristic Quantities of SOSUS Models 368 7.4.4 Determination of the Model Parameters of SOSUS Models 372 7.4.5 Simulation Models for the COST 207 Channel Models 376 7.5 Methods for Modelling of Given Power Delay Profiles 378 7.5.1 Problem Description 379 7.5.2 Methods for the Computation of the Discrete Propagation Delays and the Path Gains 381 7.5.3 Comparison of the Parameter Computation Methods 391 7.5.4 Applications to Measured Power Delay Profiles 393 7.6 Perfect Modelling and Simulation of Measured Wideband Mobile Radio Channels 396 7.6.1 The Sum-of-Cisoids Uncorrelated Scattering (SOCUS) Model 396 7.6.2 The Principle of Perfect Channel Modelling 403 7.6.3 Application to a Measured Wideband Indoor Channel 404 7.7 Further Reading 406 Appendix 7.A Specification of the L-Path COST 207 Channel Models 409 Appendix 7.B Specification of the L-Path HIPERLAN/2 Channel Models 413 8 MIMO Channel Models 417 8.1 The Generalized Principle of Deterministic Channel Modelling 418 8.2 The One-Ring MIMO Channel Model 421 8.2.1 The Geometrical One-Ring Scattering Model 422 8.2.2 The Reference Model for the One-Ring MIMO Channel Model 423 8.2.3 Simulation Models for the One-Ring MIMO Channel Model 429 8.2.4 Parameter Computation Methods 433 8.2.5 Performance Evaluation 434 8.2.6 Simulation Results 436 8.3 The Two-Ring MIMO Channel Model 438 8.3.1 The Geometrical Two-Ring Scattering Model 439 8.3.2 The Reference Model for the Two-Ring MIMO Channel Model 440 8.3.3 Simulation Models for the Two-Ring MIMO Channel Model 445 8.3.4 Isotropic and Non-Isotropic Scattering Scenarios 449 8.3.5 Parameter Computation Methods 451 8.4 The Elliptical MIMO Channel Model 457 8.4.1 The Geometrical Elliptical Scattering Model 458 8.4.2 The Reference Model for the Elliptical MIMO Channel Model 459 8.4.3 Simulation Models for the Elliptical MIMO Channel Model 463 8.4.4 Model Extensions 466 8.5 Further Reading 469 Appendix 8.A Proof of Ergodicity 472 9 High-Speed Channel Simulators 475 9.1 Discrete-Time Deterministic Processes 476 9.2 Realization of Discrete-Time Deterministic Processes 478 9.2.1 Look-Up Table System 478 9.2.2 Matrix System 481 9.2.3 Shift Register System 483 9.3 Properties of Discrete-Time Deterministic Processes 484 9.3.1 Elementary Properties of Discrete-Time Deterministic Processes 484 9.3.2 Statistical Properties of Discrete-Time Deterministic Processes 491 9.4 Realization Complexity and Simulation Speed 500 9.5 Comparison of the Sum-of-Sinusoids Method with the Filter Method 502 9.6 Further Reading 505 10 Selected Topics in Mobile Radio Channel Modelling 507 10.1 Design of Multiple Uncorrelated Rayleigh Fading Waveforms 507 10.1.1 Problem Description 508 10.1.2 Generalized Method of Exact Doppler Spread (GMEDSq) 511 10.1.3 Related Parameter Computation Methods 516 10.1.4 The Effect of Finite Simulation Time on the Cross-Correlation Properties 518 10.1.5 Further Reading 520 10.2 Spatial Channel Models for Shadow Fading 521 10.2.1 The Reference Model for Shadow Fading 522 10.2.2 The Simulation Model for Shadow Fading 523 10.2.3 Correlation Models for Shadow Fading 527 10.2.4 Further Reading 535 10.3 Frequency Hopping Mobile Radio Channels 536 10.3.1 The Reference Model for Frequency Hopping Channels 536 10.3.2 The Simulation Model for Frequency Hopping Channels 538 10.3.3 Performance Analysis 540 10.3.4 Simulation Results 544 10.3.5 Further Reading 544 Appendix 10.A Derivation of the Spatial Autocorrelation Function of Lognormal Processes 545 Appendix 10.B Derivation of the Level-Crossing Rate of Spatial Lognormal Processes 546 Appendix 10.C Derivation of the Level-Crossing Rate of Sum-of-Sinusoids Shadowing Simulators 546 Appendix 10.D Application of the Method of Equal Areas (MEA) on the Gudmundson Correlation Model 548 Appendix 10.E Derivation of the Time-Frequency Cross-Correlation Function of Frequency Hopping Channels 549 Appendix 10.F Parametrization of Frequency Hopping Channel Simulators 551 References 553 Index 571
      • 자료제공 : aladin
      • Preface to the Second Edition xi List of Acronyms xv List of Symbols xix 1 Introduction 1 1.1 The Evolution of Mobile Radio Systems 1 1.2 Basic Knowledge of Mobile Radio Channels 8 1.3 Structure of this Book 12 2 Random Variables, Stochastic Processes, and Deterministic Signals 17 2.1 Random Variables 17 2.1.1 Basic Definitions of Probability Theory 17 2.1.2 Important Probability Density Functions 24 2.1.3 Functions of Random Variables 35 2.2 Stochastic Processes 37 2.2.1 Stationary Processes 40 2.2.2 Ergodic Processes 42 2.2.3 Level-Crossing Rate and Average Duration of Fades 43 2.2.4 Linear Systems with Stochastic Inputs 45 2.3 Deterministic Signals 48 2.3.1 Deterministic Continuous-Time Signals 48 2.3.2 Deterministic Discrete-Time Signals 50 2.4 Further Reading 52 Appendix 2.A Derivation of Rice’s General Formula for the Level-Crossing Rate 52 3 Rayleigh and Rice Channels 55 3.1 System Theoretical Description of Multipath Channels 56 3.2 Formal Description of Rayleigh and Rice Channels 61 3.3 Elementary Properties of Rayleigh and Rice Channels 62 3.3.1 Autocorrelation Function and Spectrum of the Complex Envelope 62 3.3.2 Autocorrelation Function and Spectrum of the Envelope 65 3.3.3 Autocorrelation Function and Spectrum of the Squared Envelope 67 3.4 Statistical Properties of Rayleigh and Rice Channels 69 3.4.1 Probability Density Function of the Envelope and the Phase 70 3.4.2 Probability Density Function of the Squared Envelope 72 3.4.3 Level-Crossing Rate and Average Duration of Fades 73 3.4.4 The Statistics of the Fading Intervals of Rayleigh Channels 77 3.5 Further Reading 84 Appendix 3.A Derivation of the Jakes Power Spectral Density and the Corresponding Autocorrelation Function 84 Appendix 3.B Derivation of the Autocorrelation Function of the Envelope 88 Appendix 3.C Derivation of the Autocovariance Spectrum of the Envelope Under Isotropic Scattering Conditions 90 Appendix 3.D Derivation of the Level-Crossing Rate of Rice Processes with Different Spectral Shapes of the Underlying Gaussian Random Processes 91 4 Introduction to Sum-of-Sinusoids Channel Models 95 4.1 Principle of Deterministic Channel Modelling 96 4.2 Elementary Properties of Deterministic Sum-of-Sinusoids Processes 102 4.3 Statistical Properties of Deterministic Sum-of-Sinusoids Processes 107 4.3.1 Probability Density Function of the Envelope and the Phase 108 4.3.2 Level-Crossing Rate and Average Duration of Fades 115 4.3.3 Statistics of the Fading Intervals at Low Signal Levels 120 4.3.4 Stationarity and Ergodicity of Sum-of-Sinusoids Processes 122 4.4 Classes of Sum-of-Sinusoids Processes 123 4.5 Basics of Sum-of-Cisoids Channel Models 126 4.5.1 Elementary Properties of Stochastic Sum-of-Cisoids Processes 127 4.5.2 Probability Density Function of the Envelope and Phase 129 4.6 Criteria for the Performance Evaluation 135 4.7 Further Reading 135 Appendix 4.A Derivation of the Autocorrelation Function of the Squared Envelope of Complex Deterministic Gaussian Processes 136 Appendix 4.B Derivation of the Exact Solution of the Level-Crossing Rate and the Average Duration of Fades of Deterministic Rice Processes 137 5 Parametrization of Sum-of-Sinusoids Channel Models 149 5.1 Methods for Computing the Doppler Frequencies and Gains 151 5.1.1 Method of Equal Distances (MED) 151 5.1.2 Mean-Square-Error Method (MSEM) 157 5.1.3 Method of Equal Areas (MEA) 162 5.1.4 Monte Carlo Method (MCM) 170 5.1.5 Jakes Method (JM) 178 5.1.6 Lp-Norm Method (LPNM) 189 5.1.7 Method of Exact Doppler Spread (MEDS) 201 5.1.8 Randomized Method of Exact Doppler Spread (RMEDS) 205 5.1.9 Method of Exact Doppler Spread with Set Partitioning (MEDS-SP) 207 5.2 Methods for Computing the Phases 212 5.3 Fading Intervals of Deterministic Rayleigh Processes 214 5.4 Parametrization of Sum-of-Cisoids Channel Models 222 5.4.1 Problem Description 222 5.4.2 Extended Method of Exact Doppler Spread (EMEDS) 222 5.4.3 Lp-Norm Method (LPNM) 224 5.4.4 Generalized Method of Equal Areas (GMEA) 225 5.4.5 Performance Analysis 228 5.5 Concluding Remarks and Further Reading 234 Appendix 5.A Analysis of the Relative Model Error by Using the Monte Carlo Method 236 Appendix 5.B Proof of the Convergence of the Sample Mean Autocorrelation Function by Using the MEDS-SP 238 Appendix 5.C Proof of the Condition for Uncorrelated Inphase and Quadrature Components of SOC Processes 239 6 Frequency-Nonselective Channel Models 241 6.1 The Extended Suzuki Process of Type I 243 6.1.1 Modelling and Analysis of Short-Term Fading 243 6.1.2 Modelling and Analysis of Long-Term Fading 254 6.1.3 The Stochastic Extended Suzuki Process of Type I 257 6.1.4 The Deterministic Extended Suzuki Process of Type I 262 6.1.5 Applications and Simulation Results 265 6.2 The Extended Suzuki Process of Type II 268 6.2.1 Modelling and Analysis of Short-Term Fading 269 6.2.2 The Stochastic Extended Suzuki Process of Type II 279 6.2.3 The Deterministic Extended Suzuki Process of Type II 283 6.2.4 Applications and Simulation Results 287 6.3 The Generalized Rice Process 290 6.3.1 The Stochastic Generalized Rice Process 291 6.3.2 The Deterministic Generalized Rice Process 295 6.3.3 Applications and Simulation Results 298 6.4 The Modified Loo Model 300 6.4.1 The Stochastic Modified Loo Model 300 6.4.2 The Deterministic Modified Loo Model 311 6.4.3 Applications and Simulation Results 317 6.5 Modelling of Nonstationary Land Mobile Satellite Channels 319 6.5.1 Lutz’s Two-State Channel Model 320 6.5.2 M-State Channel Models 322 6.5.3 Modelling of Nonstationary Real-World LMS Channels 323 7 Frequency-Selective Channel Models 335 7.1 The Ellipse Model of Parsons and Bajwa 336 7.2 System Theoretical Description of Frequency-Selective Channels 338 7.3 Frequency-Selective Stochastic Channel Models 342 7.3.1 Correlation Functions 342 7.3.2 The WSSUS Model According to Bello 344 7.3.3 The COST 207 Channel Models 352 7.3.4 The HIPERLAN/2 Channel Models 358 7.4 Frequency-Selective Sum-of-Sinusoids Channel Models 358 7.4.1 System Functions of Sum-of-Sinusoids Uncorrelated Scattering (SOSUS) Models 358 7.4.2 Correlation Functions and Power Spectral Densities of SOSUS Models 364 7.4.3 Delay Power Spectral Density, Doppler Power Spectral Density, and Characteristic Quantities of SOSUS Models 368 7.4.4 Determination of the Model Parameters of SOSUS Models 372 7.4.5 Simulation Models for the COST 207 Channel Models 376 7.5 Methods for Modelling of Given Power Delay Profiles 378 7.5.1 Problem Description 379 7.5.2 Methods for the Computation of the Discrete Propagation Delays and the Path Gains 381 7.5.3 Comparison of the Parameter Computation Methods 391 7.5.4 Applications to Measured Power Delay Profiles 393 7.6 Perfect Modelling and Simulation of Measured Wideband Mobile Radio Channels 396 7.6.1 The Sum-of-Cisoids Uncorrelated Scattering (SOCUS) Model 396 7.6.2 The Principle of Perfect Channel Modelling 403 7.6.3 Application to a Measured Wideband Indoor Channel 404 7.7 Further Reading 406 Appendix 7.A Specification of the L-Path COST 207 Channel Models 409 Appendix 7.B Specification of the L-Path HIPERLAN/2 Channel Models 413 8 MIMO Channel Models 417 8.1 The Generalized Principle of Deterministic Channel Modelling 418 8.2 The One-Ring MIMO Channel Model 421 8.2.1 The Geometrical One-Ring Scattering Model 422 8.2.2 The Reference Model for the One-Ring MIMO Channel Model 423 8.2.3 Simulation Models for the One-Ring MIMO Channel Model 429 8.2.4 Parameter Computation Methods 433 8.2.5 Performance Evaluation 434 8.2.6 Simulation Results 436 8.3 The Two-Ring MIMO Channel Model 438 8.3.1 The Geometrical Two-Ring Scattering Model 439 8.3.2 The Reference Model for the Two-Ring MIMO Channel Model 440 8.3.3 Simulation Models for the Two-Ring MIMO Channel Model 445 8.3.4 Isotropic and Non-Isotropic Scattering Scenarios 449 8.3.5 Parameter Computation Methods 451 8.4 The Elliptical MIMO Channel Model 457 8.4.1 The Geometrical Elliptical Scattering Model 458 8.4.2 The Reference Model for the Elliptical MIMO Channel Model 459 8.4.3 Simulation Models for the Elliptical MIMO Channel Model 463 8.4.4 Model Extensions 466 8.5 Further Reading 469 Appendix 8.A Proof of Ergodicity 472 9 High-Speed Channel Simulators 475 9.1 Discrete-Time Deterministic Processes 476 9.2 Realization of Discrete-Time Deterministic Processes 478 9.2.1 Look-Up Table System 478 9.2.2 Matrix System 481 9.2.3 Shift Register System 483 9.3 Properties of Discrete-Time Deterministic Processes 484 9.3.1 Elementary Properties of Discrete-Time Deterministic Processes 484 9.3.2 Statistical Properties of Discrete-Time Deterministic Processes 491 9.4 Realization Complexity and Simulation Speed 500 9.5 Comparison of the Sum-of-Sinusoids Method with the Filter Method 502 9.6 Further Reading 505 10 Selected Topics in Mobile Radio Channel Modelling 507 10.1 Design of Multiple Uncorrelated Rayleigh Fading Waveforms 507 10.1.1 Problem Description 508 10.1.2 Generalized Method of Exact Doppler Spread (GMEDSq) 511 10.1.3 Related Parameter Computation Methods 516 10.1.4 The Effect of Finite Simulation Time on the Cross-Correlation Properties 518 10.1.5 Further Reading 520 10.2 Spatial Channel Models for Shadow Fading 521 10.2.1 The Reference Model for Shadow Fading 522 10.2.2 The Simulation Model for Shadow Fading 523 10.2.3 Correlation Models for Shadow Fading 527 10.2.4 Further Reading 535 10.3 Frequency Hopping Mobile Radio Channels 536 10.3.1 The Reference Model for Frequency Hopping Channels 536 10.3.2 The Simulation Model for Frequency Hopping Channels 538 10.3.3 Performance Analysis 540 10.3.4 Simulation Results 544 10.3.5 Further Reading 544 Appendix 10.A Derivation of the Spatial Autocorrelation Function of Lognormal Processes 545 Appendix 10.B Derivation of the Level-Crossing Rate of Spatial Lognormal Processes 546 Appendix 10.C Derivation of the Level-Crossing Rate of Sum-of-Sinusoids Shadowing Simulators 546 Appendix 10.D Application of the Method of Equal Areas (MEA) on the Gudmundson Correlation Model 548 Appendix 10.E Derivation of the Time-Frequency Cross-Correlation Function of Frequency Hopping Channels 549 Appendix 10.F Parametrization of Frequency Hopping Channel Simulators 551 References 553 Index 571
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      알라딘

      Mobile Radio Channels (Hardcover, 2)

      판매중 284,660원 233,420원 (18%)

      종이책 구매

      11,680포인트
      예스24.com

      Mobile Radio Channels

      판매중 79,000원 79,000원 (0%)

      종이책 구매

      1,580포인트 (2%)
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      책소개

      자료제공 : NAVER

      Mobile Radio Channels (Hardcover)

      Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in detail with descriptions of efficient simulation methods for mobile radio channels being central. Strong emphasis is placed on the detailed origin of the presented channel models and a high degree of mathematical unity is conveyed. Using the described channel models, the reader can evaluate the performance of wireless communication systems under propagation conditions which are typical for multipath channels in various environments. - Introduces the fundamentals of stochastic and deterministic channel models - Explores the modelling and simulation of both wideband and narrowband mobile radio channels as well as several classes of MIMO channels - Desc...

      more

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼