RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Molecular systematics and historical biogeography of the genus Gerrhonotus (Squamata: Anguidae)

      한글로보기

      https://www.riss.kr/link?id=O127276973

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        0305-0270

      • Online ISSN

        1365-2699

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        1640-1652   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in Mexico. Here, we evaluate the influence of Neogene geological events and of Pleistocene climate change in the diversification of the genus Gerrhonotus using molecular dating and ancestral area reconstruction.
      Mexico and south‐central United States.
      A multilocus sequence dataset was generated for 86 individuals of Gerrhonotus from most Mexican biogeographical provinces and belonging to five of the seven currently recognized species, as well as two putative undescribed species. Phylogeographical structure was explored using Poisson‐Tree‐Processes molecular species delimitation. Divergence events were estimated based on the fossil record using a relaxed uncorrelated lognormal clock. Ancestral areas were estimated at divergence events across the tree using a probabilistic Bayesian approach.
      Extensive geographical structure was evident within three well‐supported clades. These clades probably diverged from each other in the early to mid‐Miocene, and their divergence was followed by six divergences in the late Miocene and eight divergences in the Pliocene. The ancestral origin of Gerrhonotus with keeled dorsal scales (keeled‐scale Gerrhonotus) was reconstructed to be across the Pacific Coast Province. Our phylogenetic analyses did not support the monophyly of Gerrhonotus.
      Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have induced allopatric divergence on a relatively small spatial scale in this genus. The late Miocene–Pliocene reduction in the highlands along the Tehuantepec fault probably created a large marine embayment that led to an early divergence in a clade of Gerrhonotus. Our analysis suggests uplifting of the Trans‐Mexican Volcanic Belt during this same time period resulted in additional diversification. This was followed by more recent, independent colonization events in the Pliocene from the Mexican Plateau to the Sierra Madre Oriental, Sierra Madre Occidental, Tamaulipas and Edwards Plateau provinces. A genus Gerrhonotus with the keeled‐scale species in addition to Coloptychon rhombifer (= G. rhombifer) is strongly supported. Inclusion of the smooth dorsal‐scale species in the genus is uncertain and maintained only tentatively.
      번역하기

      Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in Mexico. Here, we evaluate the influence of Neogene geological events and of Ple...

      Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in Mexico. Here, we evaluate the influence of Neogene geological events and of Pleistocene climate change in the diversification of the genus Gerrhonotus using molecular dating and ancestral area reconstruction.
      Mexico and south‐central United States.
      A multilocus sequence dataset was generated for 86 individuals of Gerrhonotus from most Mexican biogeographical provinces and belonging to five of the seven currently recognized species, as well as two putative undescribed species. Phylogeographical structure was explored using Poisson‐Tree‐Processes molecular species delimitation. Divergence events were estimated based on the fossil record using a relaxed uncorrelated lognormal clock. Ancestral areas were estimated at divergence events across the tree using a probabilistic Bayesian approach.
      Extensive geographical structure was evident within three well‐supported clades. These clades probably diverged from each other in the early to mid‐Miocene, and their divergence was followed by six divergences in the late Miocene and eight divergences in the Pliocene. The ancestral origin of Gerrhonotus with keeled dorsal scales (keeled‐scale Gerrhonotus) was reconstructed to be across the Pacific Coast Province. Our phylogenetic analyses did not support the monophyly of Gerrhonotus.
      Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have induced allopatric divergence on a relatively small spatial scale in this genus. The late Miocene–Pliocene reduction in the highlands along the Tehuantepec fault probably created a large marine embayment that led to an early divergence in a clade of Gerrhonotus. Our analysis suggests uplifting of the Trans‐Mexican Volcanic Belt during this same time period resulted in additional diversification. This was followed by more recent, independent colonization events in the Pliocene from the Mexican Plateau to the Sierra Madre Oriental, Sierra Madre Occidental, Tamaulipas and Edwards Plateau provinces. A genus Gerrhonotus with the keeled‐scale species in addition to Coloptychon rhombifer (= G. rhombifer) is strongly supported. Inclusion of the smooth dorsal‐scale species in the genus is uncertain and maintained only tentatively.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼