RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao 의 Reverse 해석의 향상

      한글로보기

      https://www.riss.kr/link?id=A76270627

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et...

      The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al.<SUP>(1)</SUP> developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson's ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al.<SUP>(1)</SUP> and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of E<SUP>*</SUP>/ σr and was defined as function of E<SUP>*</SUP>/ σr. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, σy, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. (1) was no longer applicable above the E<SUP>*</SUP>/ σr of 400 and depended on values of E<SUP>*</SUP>/ σr. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to E<SUP>*</SUP>/ σr of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao's study.<SUP>(1)</SUP>

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 나노압입시험의 유한요소해석
      • 3. 나노압입시험 유한요소해석 결과
      • 4. Reverse 해석 및 나노압입시험
      • Abstract
      • 1. 서론
      • 2. 나노압입시험의 유한요소해석
      • 3. 나노압입시험 유한요소해석 결과
      • 4. Reverse 해석 및 나노압입시험
      • 5. 결론
      • 후기
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 Tunvisut, K., "Use of Scaling Functions to Determine Mechanical Properties of Thin Coatings from Microindentation Tests" 38 : 335-351, 2001

      2 Tabor, D., "The Hardness of Metals Published in the Oxford Classics series 2000" Oxford University Press 2000

      3 Cheng, Y. T., "Scaling, Dimensional, and Indentation Measurements" 44 : 91-149, 2004

      4 Ogasawara, N., "Representative Strain of Indentation Analysis" 20 (20): 2225-2234, 2005

      5 Fischer-Cripps A. C., "Nanoindentation" Springer-Verlag 90-95, 2002

      6 Ogasawara, N., "Measuring the Plastic Properties of Bulk Materials by Singles Indentation Test" 54 : 65-70, 2006

      7 Oliver, W. C., "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology" 19 (19): 3-20, 2004

      8 Swaddiwudhipong, S., "Material Characterization Based on Dual Indenters" 42 : 69-83, 2005

      9 Rieth, M., "Handbook of Theoretical and Computational Nanotechnology" 4 : 387-461, 2004

      10 Yan, J., "Determining Plastic Properties of a Material with Residual Stress by Using Conical Indentation" 44 : 3720-3737, 2007

      1 Tunvisut, K., "Use of Scaling Functions to Determine Mechanical Properties of Thin Coatings from Microindentation Tests" 38 : 335-351, 2001

      2 Tabor, D., "The Hardness of Metals Published in the Oxford Classics series 2000" Oxford University Press 2000

      3 Cheng, Y. T., "Scaling, Dimensional, and Indentation Measurements" 44 : 91-149, 2004

      4 Ogasawara, N., "Representative Strain of Indentation Analysis" 20 (20): 2225-2234, 2005

      5 Fischer-Cripps A. C., "Nanoindentation" Springer-Verlag 90-95, 2002

      6 Ogasawara, N., "Measuring the Plastic Properties of Bulk Materials by Singles Indentation Test" 54 : 65-70, 2006

      7 Oliver, W. C., "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology" 19 (19): 3-20, 2004

      8 Swaddiwudhipong, S., "Material Characterization Based on Dual Indenters" 42 : 69-83, 2005

      9 Rieth, M., "Handbook of Theoretical and Computational Nanotechnology" 4 : 387-461, 2004

      10 Yan, J., "Determining Plastic Properties of a Material with Residual Stress by Using Conical Indentation" 44 : 3720-3737, 2007

      11 Bucaille, J. L., "Determination of Plastic Properties of Metals by Instrumented Indentation Using Different Sharp Indenters" 51 : 1663-1678, 2003

      12 Giannakopoulos, A. E., "Determination of Elastoplastic Properties by Instrumented Sharp Indentation" 40 (40): 1191-1198, 1999

      13 Chollacoop, N., "Depth-Sensing Instrumented Indentation with Dual Sharp Indenters" 51 : 3713-3729, 2003

      14 Johnson, K. L., "Contact Mechanics" Cambridge University Press 1985

      15 Dao, M., "Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation" 49 : 3899-3918, 2001

      16 Pelletire, H., "Characterization of Mechanical Properties of Thin Films Using Nanoindentation test" 38 : 1182-1198, 2006

      17 Oliver, W. C., "An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments" 7 (7): 1564-1583, 1992

      18 Zeng, K., "An Analysis of Load-Prenetration Curves from Instrumented Indentation" 49 : 3539-3551, 2001

      19 Fischer-Cripps, A, C., "A Review of Analysis Methods for Sub-Micron Indentation Testing" 58 : 569-585, 2000

      20 Lee, J, H., "A Numerical Approach to Indentation Techniques for Thin-Film Property Evaluation" 31 (31): 313-321, 2007

      21 Lee, H. I., "A Numerical Approach Indentation Technique for Material Property Evaluation" 53 : 2037-2069, 2005

      22 Cao, Y, P., "A New Method to Extract the Plastic Properties of Metal Materials from an Instrumented Spherical Indentation Loading Curve" 52 : 4023-4032, 2004

      23 Antunes, J. M., "A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation" 55 : 69-81, 2007

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.23 0.506 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼