RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

      한글로보기

      https://www.riss.kr/link?id=A106441323

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.
      번역하기

      The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and c...

      The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

      더보기

      참고문헌 (Reference)

      1 Qi-bin Lin, "双刃滚刀破岩特性与声发射试验研究" Springer Science and Business Media LLC 25 (25): 357-367, 2018

      2 Weiji Liu, "The analysis of ductile-brittle failure mode transition in rock cutting" Elsevier BV 163 : 311-319, 2018

      3 Weiji Liu, "The ROP mechanism study in hard formation drilling using local impact method" 국제구조공학회 68 (68): 95-101, 2018

      4 Xiaohua Zhu, "The Investigation of Rock Indentation Simulation Based on Discrete Element Method" 대한토목학회 21 (21): 1201-1212, 2017

      5 Pradeep L. Menezes, "Studies on the formation of discontinuous rock fragments during cutting operation" Elsevier BV 71 : 131-142, 2014

      6 Pradeep L. Menezes, "Studies on the formation of discontinuous chips during rock cutting using an explicit finite element model" Springer Science and Business Media LLC 70 (70): 635-648, 2014

      7 Block, G., "Role of failure mode on rock cutting dynamics" 2009

      8 Da Fontoura, S. A. B., "Rock mechanics aspects of drill bit rock interaction" 2011

      9 Kahraman, S., "Predicting the compressive and tensile strength of rocks from indentation hardness index" 112 (112): 331-339, 2012

      10 Yu, H. Z., "Particle flow code modeling of shear behavior of rock joints" 7 : 1482-1490, 2013

      1 Qi-bin Lin, "双刃滚刀破岩特性与声发射试验研究" Springer Science and Business Media LLC 25 (25): 357-367, 2018

      2 Weiji Liu, "The analysis of ductile-brittle failure mode transition in rock cutting" Elsevier BV 163 : 311-319, 2018

      3 Weiji Liu, "The ROP mechanism study in hard formation drilling using local impact method" 국제구조공학회 68 (68): 95-101, 2018

      4 Xiaohua Zhu, "The Investigation of Rock Indentation Simulation Based on Discrete Element Method" 대한토목학회 21 (21): 1201-1212, 2017

      5 Pradeep L. Menezes, "Studies on the formation of discontinuous rock fragments during cutting operation" Elsevier BV 71 : 131-142, 2014

      6 Pradeep L. Menezes, "Studies on the formation of discontinuous chips during rock cutting using an explicit finite element model" Springer Science and Business Media LLC 70 (70): 635-648, 2014

      7 Block, G., "Role of failure mode on rock cutting dynamics" 2009

      8 Da Fontoura, S. A. B., "Rock mechanics aspects of drill bit rock interaction" 2011

      9 Kahraman, S., "Predicting the compressive and tensile strength of rocks from indentation hardness index" 112 (112): 331-339, 2012

      10 Yu, H. Z., "Particle flow code modeling of shear behavior of rock joints" 7 : 1482-1490, 2013

      11 Ledgerwood, L. W., "PFC Modeling of Rock Cutting Under High Pressure Conditions" 2017

      12 Yaneng Zhou, "On the critical failure mode transition depth for rock cutting" Elsevier BV 62 : 131-137, 2013

      13 Hongsu Ma, "Numerical study of the effect of confining stress on rock fragmentation by TBM cutters" Elsevier BV 48 (48): 1021-1033, 2011

      14 Hongsu Ma, "Numerical study of the effect of confining stress on rock fragmentation by TBM cutters" Elsevier BV 48 (48): 1021-1033, 2011

      15 S. Y. Wang, "Numerical simulation of the rock fragmentation process induced by two drill bits subjected to static and dynamic (impact) loading" Springer Science and Business Media LLC 44 (44): 317-332, 2011

      16 Liu, H. Y., "Numerical simulation of the rock fragmentation process induced by indenters" 39 (39): 491-505, 2002

      17 Okan Su, "Numerical simulation of rock cutting using the discrete element method" Elsevier BV 48 (48): 434-442, 2011

      18 H. Y. Liu, "Numerical Studies on Bit-Rock Fragmentation Mechanisms" American Society of Civil Engineers (ASCE) 8 (8): 45-67, 2008

      19 M. Stavropoulou, "Modeling of small-diameter rotary drilling tests on marbles" Elsevier BV 43 (43): 1034-1051, 2006

      20 Weiji Liu, "Investigation of the tool-rock interaction using Drucker-Prager failure criterion" Elsevier BV 173 : 269-278, 2019

      21 Shao-Quan Kou, "Identification of the governing parameters related to rock indentation depth by using similarity analysis" Elsevier BV 49 (49): 261-269, 1998

      22 Lichun Jia, "Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression" Elsevier BV 50 : 58-62, 2013

      23 O.K. Ajibose, "Experimental studies of the resultant contact forces in drillbit–rock interaction" Elsevier BV 91 : 3-11, 2015

      24 N. Innaurato, "Experimental and Numerical Studies on Rock Breaking with TBM Tools under High Stress Confinement" Springer Science and Business Media LLC 40 (40): 429-451, 2007

      25 Lei, S. T., "Distinct element modeling of rock cutting under hydrostatic pressure" 250 : 110-117, 2003

      26 Jerzy Rojek, "Discrete element simulation of rock cutting" Elsevier BV 48 (48): 996-1010, 2011

      27 Xianqun He, "Discrete element modelling of rock cutting: from ductile to brittle transition" Wiley 39 (39): 1331-1351, 2015

      28 Huang, H., "Discrete element modelling of rock cutting" 1 (1): 123-130, 1999

      29 H. Huang, "Discrete element modeling of tool-rock interaction I: rock cutting" Wiley 37 (37): 1913-1929, 2013

      30 Mendoza, J. A., "Discrete element modeling of rock cutting usng crushable particles" 2010

      31 Richard, T., "Determination of rock strength from cutting tests" University of Minnesota 1999

      32 Richard P. Jensen, "DEM simulation of granular media—structure interface: effects of surface roughness and particle shape" Wiley 23 (23): 531-547, 1999

      33 Franca, L. F. P., "Cutting Action of Impregnated Diamond Segments: Modelling And Experimental Validation" 2010

      34 Mendoza, J. A., "Considerations for discrete modeling of rock cutting" 2011

      35 S. H. Hoseinie, "Comparison of Some Rock Hardness Scales Applied in Drillability Studies" Springer Science and Business Media LLC 37 (37): 1451-1458, 2012

      36 E. Oñate, "Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems" Elsevier BV 193 (193): 3087-3128, 2004

      37 Patricia A. Thomas, "Capturing Nonspherical Shape of Granular Media with Disk Clusters" American Society of Civil Engineers (ASCE) 125 (125): 169-178, 1999

      38 Z Fang, "Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions" Elsevier BV 39 (39): 459-476, 2002

      39 Mohammad Haftani, "A new method for correlating rock strength to indentation tests" Elsevier BV 112 : 24-31, 2013

      40 Ryuta Kasada, "A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques" Elsevier BV 86 (86): 2658-2661, 2011

      41 N. Cho, "A clumped particle model for rock" Elsevier BV 44 (44): 997-1010, 2007

      42 D.O. Potyondy, "A bonded-particle model for rock" Elsevier BV 41 (41): 1329-1364, 2004

      43 T. Moon, "A Study of Optimal Rock-Cutting Conditions for Hard Rock TBM Using the Discrete Element Method" Springer Science and Business Media LLC 45 (45): 837-849, 2011

      44 E. Ghazvinian, "3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing" Elsevier BV 6 (6): 506-521, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재
      2005-05-26 학술지명변경 한글명 : 국제구조계산역학지 -> Structural Engineering and Mechanics, An Int'l Journal KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.12 0.62 0.94
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.79 0.68 0.453 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼