Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy o...
Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy or an ice at ambient temperature, but the diffusion coefficient increases on increasing the temperature of the system or decreasing the density. This suggests scaling the OSS2 potential. The O-O, O-H, and H-H radial distribution functions and the corresponding coordination numbers for the scaled OSS2 potential, obtained by MD simulation, are in good agreement with the experiment results and calculations for the SPC/E water potential over a range of temperatures.