본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300 ℃ 이상에서 24 h 동안 수증기...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A105523371
2018
Korean
KCI등재,SCOPUS,ESCI
학술저널
468-473(6쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300 ℃ 이상에서 24 h 동안 수증기...
본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300 ℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진 류와 아스팔텐류가 감소하고, 포화탄화수소류(saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이때 스팀 양이 적은 경우에는 가수열분해 반응 후 아스팔텐 함량이 증가되는 역반응 효과도 관측되었다. 수소공여제인 데칼린을 사용하며 메탈옥사이드-제올라이트계 촉매를 사용하는 접촉식 가수열분해 반응 결과 레진과 아스팔텐류가 10% 정도 줄고 방향족 탄화수소류가 10% 증가하면서 점도 감소효과도 70% 정도로 우수하였다. GC-Mass spectroscopy를 이용하여 촉매 사용 시 가수열분해 반응 결과 분자량이 적은 물질로의 분해효과가 우수함을 확인할 수 있었다.
다국어 초록 (Multilingual Abstract)
In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount o...
In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.
참고문헌 (Reference)
1 Y. H. Shokrlu, "Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications" 119 : 210-220, 2014
2 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003
3 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions. Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003
4 이후철, "Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization" 한국공업화학회 27 (27): 343-352, 2016
5 J. Wang, "The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive" 66 : 69-74, 2009
6 Y. Liu, "The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation" 16 : 842-846, 2002
7 F. Zhao, "The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions" 6 (6): 2037-2041, 2014
8 A. Bera, "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review" 151 : 206-226, 2015
9 F. R. Ahmadun, "Review of technologies for oil and gas produced water treatment" 170 : 530-551, 2009
10 S. Merissa, "Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil" 1554 : 131-134, 2013
1 Y. H. Shokrlu, "Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications" 119 : 210-220, 2014
2 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003
3 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions. Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003
4 이후철, "Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization" 한국공업화학회 27 (27): 343-352, 2016
5 J. Wang, "The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive" 66 : 69-74, 2009
6 Y. Liu, "The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation" 16 : 842-846, 2002
7 F. Zhao, "The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions" 6 (6): 2037-2041, 2014
8 A. Bera, "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review" 151 : 206-226, 2015
9 F. R. Ahmadun, "Review of technologies for oil and gas produced water treatment" 170 : 530-551, 2009
10 S. Merissa, "Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil" 1554 : 131-134, 2013
11 C. Wu, "Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst" 38 : 684-690, 2010
12 L. Zhong, "Liaohe extra-heavy crude oil underground aquathermolytic treatments using catalyst and hydrogen donors under steam injection conditions, SPE-84863" 2003
13 O. Muraza, "Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction" 114 : 1-10, 2015
14 R. F. Meyer, "Heavy Oil and Natural Bitumen Resources in Geological Basins of the World" U.S. Department of Interior & U.S. Geological Survey 2007
15 S. B. Wen, "Effect of silicotungstic acid on catalytic visbreaking of extra heavy oil from Shengli oilfield" 28 : 25-27, 2004
16 P. Jing, "Effect of
17 C. Ovalles, "Downhole upgrading of extra-heavy crude oil using hydrogen donors and methane under steam injection conditions" 21 : 255-274, 2003
18 H. C. Kim, "Demetallization by MCM-48 from asphalten of vacuum residual oils: Analysis by UV-visible spectrophotometer" 27 : 4288-4290, 2015
19 S. K. Maity, "Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review" 24 : 2809-2816, 2010
20 고진영, "Aquathermolysis 반응에 의한 감압잔사유의 개질" 한국공업화학회 28 (28): 467-472, 2017
21 J. B. Hyne, "Aquathermolysis of heavy oils" 404-411, 1984
22 O. Muraza, "Aquathermolysis of heavy oil: A review and perspective on catalyst development" 157 : 219-231, 2015
23 P. R. Kapadia, "A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen" 131 : 270-289, 2015
24 M. F. Ali, "A review of methods for the demetallization of residual fuel oils" 87 : 573-584, 2006
Clostridium ljungdahlii 배양에서 배지 조성에 따른 균주 성장과 바이오에탄올 생산에 대한 영향
오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구
Brij계 비이온성 혼합유화제를 이용하여 제조된 화장용크림 O/W 유화액의 유화안정성
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2013-12-01 | 평가 | SCOPUS 등재 (등재유지) | |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2010-02-19 | 학술지명변경 | 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering | |
2009-04-28 | 학술지명변경 | 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry | |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.32 | 0.32 | 0.34 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.33 | 0.33 | 0.45 | 0.05 |