RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      영역 분할을 이용한 효율적인 음원 인식 시스템 구현 = Implementation of efficient sound source localization system using angle division

      한글로보기

      https://www.riss.kr/link?id=T11616768

      • 저자
      • 발행사항

        전주 : 전북대학교 대학원, 2009

      • 학위논문사항

        학위논문(석사) -- 전북대학교 대학원 , 전자.정보공학부 , 2009. 2

      • 발행연도

        2009

      • 작성언어

        한국어

      • 주제어
      • 발행국(도시)

        전북특별자치도

      • 기타서명

        Implementation of efficient sound source localization system using angle division

      • 형태사항

        vii, 35p : 삽도 ; 26cm

      • 일반주기명

        전북대학교 논문은 저작권에 의해 보호받습니다.
        지도교수:정진균
        참고문헌 : p. 33-35

      • 소장기관
        • 전북대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      There are many applications that would be aided by the determination of the physical position and orientation of users. Some of the applications include service robots, video conference, intelligent living environments, security systems and speech separation for hands-free communication devices. Without information on the spatial location of users in a given environment, it would not be possible to react naturally to the needs of the users in these applications.
      To localize a user, sound source localization techniques are widely used. Sound localization is the process of determining the spatial location of a sound source based on multiple observations of the received sound signals. Current sound localization techniques are generally based upon the idea of computing the time delay of arrival (TDOA) information with microphone arrays.
      An efficient method to obtain TDOA information between two signals is to compute the cross-correlation of the two signals. The computed correlation values give the point at which the two signals from separate microphones are at their maximum correlation. When only two isotropic (i.e., not directional as in the mammalian ear) microphones are used, the system experiences front-back confusion effect: the system has difficulty in determining whether the sound is originating from in front of or behind the system. To overcome this problem, more microphones can be incorporated.
      Various weighting functions or prefilters such as Roth, SCOT, PHAT, Eckart filter and HT can be used to increase the performance of time delay estimation. However, the performance improvement is achieved with the penalty of large hardware overhead if the system is implemented in VLSI system.
      In this thesis, we propose an efficient sound source localization technique using angle division under the assumption that three isotropic microphones are used to avoid the front-back confusion effect. By the proposed approach, the region from 0°to 180°is divided into three regions and only one of the three regions is considered to estimate the sound direction. Using Verilog simulations, it is shown that considerable amount of computation time and hardware complexity can be reduced by the proposed approach. In addition, it is also shown that the accuracy of the estimation is improved due to the proper choice of the selected region.
      번역하기

      There are many applications that would be aided by the determination of the physical position and orientation of users. Some of the applications include service robots, video conference, intelligent living environments, security systems and speech sep...

      There are many applications that would be aided by the determination of the physical position and orientation of users. Some of the applications include service robots, video conference, intelligent living environments, security systems and speech separation for hands-free communication devices. Without information on the spatial location of users in a given environment, it would not be possible to react naturally to the needs of the users in these applications.
      To localize a user, sound source localization techniques are widely used. Sound localization is the process of determining the spatial location of a sound source based on multiple observations of the received sound signals. Current sound localization techniques are generally based upon the idea of computing the time delay of arrival (TDOA) information with microphone arrays.
      An efficient method to obtain TDOA information between two signals is to compute the cross-correlation of the two signals. The computed correlation values give the point at which the two signals from separate microphones are at their maximum correlation. When only two isotropic (i.e., not directional as in the mammalian ear) microphones are used, the system experiences front-back confusion effect: the system has difficulty in determining whether the sound is originating from in front of or behind the system. To overcome this problem, more microphones can be incorporated.
      Various weighting functions or prefilters such as Roth, SCOT, PHAT, Eckart filter and HT can be used to increase the performance of time delay estimation. However, the performance improvement is achieved with the penalty of large hardware overhead if the system is implemented in VLSI system.
      In this thesis, we propose an efficient sound source localization technique using angle division under the assumption that three isotropic microphones are used to avoid the front-back confusion effect. By the proposed approach, the region from 0°to 180°is divided into three regions and only one of the three regions is considered to estimate the sound direction. Using Verilog simulations, it is shown that considerable amount of computation time and hardware complexity can be reduced by the proposed approach. In addition, it is also shown that the accuracy of the estimation is improved due to the proper choice of the selected region.

      더보기

      목차 (Table of Contents)

      • 제 1 장 서론 = 1
      • 1.1. 연구배경 = 1
      • 1.2. 연구목적 = 2
      • 제 2 장 시간지연 추정 = 3
      • 2.1. 시간지연을 이용한 음원 위치 추정 = 3
      • 제 1 장 서론 = 1
      • 1.1. 연구배경 = 1
      • 1.2. 연구목적 = 2
      • 제 2 장 시간지연 추정 = 3
      • 2.1. 시간지연을 이용한 음원 위치 추정 = 3
      • 2.1.1. 자유 음장 공간에서의 음원 위치 추정 = 3
      • 2.1.2. 앞뒤 혼동 현상 = 4
      • 2.1.3. 3개의 마이크로폰을 이용한 음원 위치 추정 = 5
      • 2.2. 상호 상관함수 = 7
      • 2.2.1. 시간지연을 구하는 기존 방법 = 7
      • 2.2.2. 상호 상관계수를 이용한 시간지연 추정 = 7
      • 제 3 장 영역 분할을 이용한 추정방법 = 9
      • 3.1. 기존의 음원 위치 추정방법 = 9
      • 3.2. 지연시간을 이용한 음원 위치 추정방법의 문제점 = 11
      • 3.3. 음원의 영역 분할방법 = 11
      • 3.4. 음원에 따른 영역 선택 방법 = 14
      • 3.5. 선형 방정식을 이용한 각도 사상(mapping)법 = 16
      • 3.6. 제안된 알고리즘의 시뮬레이션 결과 = 18
      • 제 4 장 음원 인식 시스템 구현 = 21
      • 4.1. 음원 인식 시스템 구조 = 21
      • 4.1.1. 음원 인식 시스템 동작 처리 과정 = 21
      • 4.1.2. 임계값 결정 = 22
      • 4.1.3. 효율적인 구조의 상호 상관함수의 효율적 계산 = 23
      • 4.1.4. 최대값 계산 = 24
      • 4.1.5. 최적 영역 선택 = 26
      • 4.1.6 선형 각도 사상 = 28
      • 4.1.7. 크기 정렬 = 29
      • 4.2. ASIC 구현 = 30
      • 제 5 장 결론 및 고찰 = 32
      • 참고문헌 = 33
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼