RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      시공간 데이타베이스의 엔트로피 기반 동적 히스토그램 = Temporal and Spatial Database Entropy-based Dynamic Histogram for Spatio-temporal Databases

      한글로보기

      https://www.riss.kr/link?id=A82293106

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relati...

      Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relational database systems. However, in the spatio-temporal databases for the moving objects, the continual changes of the data distribution suffer the direct utilization of the state of the art histogram techniques. Specifically for the future queries, we need another methodology that considers the updated information and keeps the accuracy of the result.
      In this paper we propose a novel approach based upon the duality and the marginal distribution to construct a histogram with very little time since the spatio-temporal histogram requires the data distribution defined by query predicates. We use data synopsis method in the dual space to construct spatio-temporal histograms. Our method is robust to changing data distributions during a certain period of time while the objects keep the linear movements. An additional feature of our approach supports the dynamic update incrementally and maintains the accuracy of the estimated result.

      더보기

      국문 초록 (Abstract)

      질의 최적화에 사용하기 위한 선택도 추정 방법은 히스토그램, 샘플링 그리고 패러미터에 의한 요약 방법 등이 제시되고 있다. 히스토그램을 이용한 선택도 추정은 상용 데이타베이스 시스...

      질의 최적화에 사용하기 위한 선택도 추정 방법은 히스토그램, 샘플링 그리고 패러미터에 의한 요약 방법 등이 제시되고 있다. 히스토그램을 이용한 선택도 추정은 상용 데이타베이스 시스템에서 가장 보편적으로 사용되는 방법이지만, 이동 객체를 위한 시공간 데이타베이스에서는 데이타 분포가 지속적으로 변화함으로써 기존의 히스토그램 방법을 이용하는 것은 제한이 많게 된다. 특히 미래 질의를 위해서는 데이타 갱신을 반영하는 동적 관리가 가능하며, 정확도를 유지할 수 있는 다른 접근 방법이 필요하다.
      따라서 시공간 객체를 위한 선택도 추정 방법은 질의 술어가 요구하는 데이타 분포에 대한 히스토그램이 필요하며, 본 논문에서는 미래의 시공간 영역 질의 술어에 대하여 신속히 히스토그램을 생성할 수 있도록 쌍대성과 한계 분포 방법을 이용한 히스토그램을 제안한다. 쌍대 공간에서 이동 객체에 대한 데이타 시놉시스를 이용하여 구성된 시공간 히스토그램은 이동 궤적의 선형성이 유지하는 시간 동안 정확성을 보장하면서 빠른 시간에 생성이 가능하다. 또한 동적 갱신을 점증적으로 지원함으로써 효율적으로 갱신된 정보를 반영할 수 있고 추정 결과의 정확성을 향상시킬 수 있다.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 문제 정의 및 연구 동기
      • 3. 관련 연구
      • 요약
      • Abstract
      • 1. 서론
      • 2. 문제 정의 및 연구 동기
      • 3. 관련 연구
      • 4. 엔트로피 기반 시공간 히스토그램
      • 5. 히스토그램의 성능 및 효율성 분석
      • 6. 결론
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 데이타베이스</br>외국어명 : Journal of KIISE : Databases KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼