Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relati...
Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relational database systems. However, in the spatio-temporal databases for the moving objects, the continual changes of the data distribution suffer the direct utilization of the state of the art histogram techniques. Specifically for the future queries, we need another methodology that considers the updated information and keeps the accuracy of the result.
In this paper we propose a novel approach based upon the duality and the marginal distribution to construct a histogram with very little time since the spatio-temporal histogram requires the data distribution defined by query predicates. We use data synopsis method in the dual space to construct spatio-temporal histograms. Our method is robust to changing data distributions during a certain period of time while the objects keep the linear movements. An additional feature of our approach supports the dynamic update incrementally and maintains the accuracy of the estimated result.