RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      업컨버전 나노입자를 이용한 광역학치료 연구 동향 = Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles

      한글로보기

      https://www.riss.kr/link?id=A105257588

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을...

      광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다. 하지만 일반적인 감광제는 가시광선을 광원으로 사용하므로 이에 따른 부작용 및 치료효과의 한계가 존재한다.
      이러한 이유로 가시광선 대신 근적외선을 광원으로 사용할 수 있는 업컨버전 나노입자가 질병진단 및 치료 분야에서주목을 받고 있다. 업컨버전 나노입자는 세포 독성 및 광원에 의한 부작용이 적고, 광원의 조직 내 높은 투과율 및낮은 자가형광 등의 장점을 가지고 있다. 근적외선 업컨버전을 광역학치료에 활용하기 위해서는 근적외선을 흡수하는업컨버전 나노입자를 활성산소를 생성시키는 감광제와 결합시켜야 한다. 나노입자에 결합된 감광제는 나노입자로부터 빛 에너지를 흡수하고 이를 주위의 산소에 전이시켜 활성산소를 생성한다. 뿐만 아니라 질병의 치료 효율은 업컨버전 나노입자의 표면을 개질하거나 항암 약물의 첨가, 또는 광열치료와의 결합을 통해 더욱 향상시킬 수 있다. 본총설은 업컨버전 나노입자를 이용한 광역학치료와 이를 이용한 질병 치료 효과 향상에 대한 최근의 연구결과를 바탕으로 서술하였다.

      더보기

      참고문헌 (Reference)

      1 L. Feng, "g-$C_3N_4$ Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging" 28 : 7935-7946, 2016

      2 H. Wen, "Upconverting near-infrared light through energy management in core-shell-shell nanoparticles" 52 : 13419-13423, 2013

      3 D. K. Chatterjee, "Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells" 3 : 73-82, 2008

      4 C. Wang, "Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics" 3 : 317-330, 2013

      5 Q. Liu, "Upconversion luminescence imaging of cells and small animals" 8 : 2033-2044, 2013

      6 Z. Hou, "UV-emitting upconversion-based $TiO_2$ photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway" 9 : 2584-2599, 2015

      7 F. Wang, "Tuning upconversion through energy migration in core-shell nanoparticles" 10 : 968-973, 2011

      8 X. F. Qiao, "Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro" 4 : 4611-4623, 2012

      9 S. S. Lucky, "Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy" 9 : 191-205, 2015

      10 T. L. Doane, "The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy" 41 : 2885-2911, 2012

      1 L. Feng, "g-$C_3N_4$ Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging" 28 : 7935-7946, 2016

      2 H. Wen, "Upconverting near-infrared light through energy management in core-shell-shell nanoparticles" 52 : 13419-13423, 2013

      3 D. K. Chatterjee, "Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells" 3 : 73-82, 2008

      4 C. Wang, "Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics" 3 : 317-330, 2013

      5 Q. Liu, "Upconversion luminescence imaging of cells and small animals" 8 : 2033-2044, 2013

      6 Z. Hou, "UV-emitting upconversion-based $TiO_2$ photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway" 9 : 2584-2599, 2015

      7 F. Wang, "Tuning upconversion through energy migration in core-shell nanoparticles" 10 : 968-973, 2011

      8 X. F. Qiao, "Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro" 4 : 4611-4623, 2012

      9 S. S. Lucky, "Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy" 9 : 191-205, 2015

      10 T. L. Doane, "The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy" 41 : 2885-2911, 2012

      11 N. L. Oleinick, "The role of apoptosis in response to photodynamic therapy: what, where, why, and how" 1 : 1-21, 2002

      12 M. R. Saboktakin, "The novel polymeric systems for photodynamic therapy technique" 65 : 398-414, 2014

      13 S. Jin, "The evolution of gadolinium based contrast agents: From single-modality to multi-modality" 5 : 11910-11918, 2013

      14 E. J. Hong, "Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials" 6 : 297-307, 2016

      15 N. Bogdan, "Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles" 11 : 835-840, 2011

      16 N. Teraphongphom, "Specimen mapping in head and neck cancer using fluorescence imaging" 2 : 447-452, 2017

      17 L. Zhou, "Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers" 6 : 6938-, 2015

      18 Y. Wang, "Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine" 136 : 271-273, 2014

      19 J. L. Vivero-Escoto, "Silica-based nanoprobes for biomedical imaging and theranostic applications" 41 : 2673-2685, 2012

      20 P. Couleaud, "Silica-based nanoparticles for photodynamic therapy applications" 2 : 1083-1095, 2010

      21 D. Zheng, "Shell-engineering of hollow g-$C_3N_4$ nanospheres via copolymerization for photocatalytic hydrogen evolution" 51 : 9706-9709, 2015

      22 W. M. Sharman, "Role of activated oxygen species in photodynamic therapy" 319 : 376-400, 2000

      23 P. Zhang, "Recent progress in light-triggered nanotheranostics for cancer treatment" 6 : 948-968, 2016

      24 W. Feng, "Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications" 5 : 75-, 2013

      25 J. Lai, "Real-time monitoring of ATP-responsive drug release using mesoporous-silicacoated multicolor upconversion nanoparticles" 9 : 5234-5245, 2015

      26 G. Makin, "Principles of chemotherapy" 24 : 161-165, 2014

      27 S. De Koker, "Polymeric multilayer capsules for drug delivery" 41 : 2867-2884, 2012

      28 Y. Wang, "Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry" 51 : 68-89, 2012

      29 T. J. Dougherty, "Photoradiation therapy. II. cure of animal tumors with hematoporphyrin and light" 55 : 115-121, 1975

      30 W. D. Jang, "Photofunctional hollow nanocapsules for biomedical applications" 2 : 2202-2211, 2014

      31 P. Agostinis, "Photodynamic therapy of cancer: an update" 61 : 250-281, 2011

      32 L. Ge, "Novel visible light-induced g-$C_3N_4/Bi_2WO_6$ composite photocatalysts for efficient degradation of methyl orange" 108-109 : 100-107, 2011

      33 Y. Guan, "Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy" 9 : 26731-26739, 2017

      34 H. Wang, "Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles" 239 : 78-85, 2017

      35 S. S. Lucky, "Nanoparticles in photodynamic therapy" 115 : 1990-2042, 2015

      36 R. Naccache, "Multifunctional nanomaterials and their applications in drug delivery and cancer therapy" 4 : 1067-1105, 2012

      37 F. Tang, "Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery" 24 : 1504-1534, 2012

      38 K. Raemdonck, "Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery" 43 : 444-472, 2014

      39 X. Xie, "Mechanistic investigation of photon upconversion in $Nd^{3+}$-sensitized core-shell nanoparticles" 135 : 12608-12611, 2013

      40 A. P. Castano, "Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization" 1 : 279-293, 2004

      41 M. Wang, "Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy" 6 : 8274-8282, 2014

      42 P. Huang, "Lanthanide-doped $LiLuF_4$ upconversion nanoprobes for the detection of disease biomarkers" 53 : 1252-1257, 2014

      43 F. Chen, "In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles" 7 : 9027-9039, 2013

      44 N. M. Idris, "In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers" 18 : 1580-1585, 2012

      45 Y. Zheng, "Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis" 5 : 6717-6731, 2012

      46 P. Yang, "Functionalized mesoporous silica materials for controlled drug delivery" 41 : 3679-3698, 2012

      47 X. Liu, "Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells" 2 : 5358-5367, 2014

      48 X. Chen, "Fe-g-$C_3N_4$-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light" 131 : 11658-11659, 2009

      49 L. Liang, "Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy" 8 : 11945-11953, 2016

      50 Y. Zhong, "Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of $Nd^{3+}$-Sensitized nanoparticles" 26 : 2831-2837, 2014

      51 J. Nicolas, "Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery" 42 : 1147-1235, 2013

      52 A. V. Ambade, "Dendrimeric micelles for controlled drug release and targeted delivery" 2 : 264-272, 2005

      53 L. Liang, "Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles" 51 : 461-470, 2017

      54 R. Anand, "Citric acid-${\gamma}$-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery" 12 : 1841-1854, 2013

      55 V. Biju, "Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy" 43 : 744-764, 2014

      56 R. Siegel, "Cancer statistics, 2013" 63 : 11-30, 2013

      57 J. Sun, "Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles" 3 : 1139-, 2012

      58 R. Lv, "An imaging-guided platform for synergistic photodynamic/photothermal/chemo therapy with pH/temperature-responsive drug release" 63 : 115-127, 2015

      59 L. Feng, "A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy" 9 : 12993-13008, 2017

      60 C. Dong, "A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy" 8 : 32688-32698, 2016

      61 Z. Yu, "A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy" 9 : 11064-11074, 2015

      62 A. Dong, "A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals" 133 : 998-1006, 2011

      63 H. Zhang, "A comparison of $TiO_2$ and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer" 10 : 1450-1457, 2014

      64 D. Wang, "808 nm driven $Nd^{3+}$-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging" 7 : 190-197, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼