광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A105257588
2018
Korean
KCI등재,SCOPUS,ESCI
학술저널
138-146(9쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을...
광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다. 하지만 일반적인 감광제는 가시광선을 광원으로 사용하므로 이에 따른 부작용 및 치료효과의 한계가 존재한다.
이러한 이유로 가시광선 대신 근적외선을 광원으로 사용할 수 있는 업컨버전 나노입자가 질병진단 및 치료 분야에서주목을 받고 있다. 업컨버전 나노입자는 세포 독성 및 광원에 의한 부작용이 적고, 광원의 조직 내 높은 투과율 및낮은 자가형광 등의 장점을 가지고 있다. 근적외선 업컨버전을 광역학치료에 활용하기 위해서는 근적외선을 흡수하는업컨버전 나노입자를 활성산소를 생성시키는 감광제와 결합시켜야 한다. 나노입자에 결합된 감광제는 나노입자로부터 빛 에너지를 흡수하고 이를 주위의 산소에 전이시켜 활성산소를 생성한다. 뿐만 아니라 질병의 치료 효율은 업컨버전 나노입자의 표면을 개질하거나 항암 약물의 첨가, 또는 광열치료와의 결합을 통해 더욱 향상시킬 수 있다. 본총설은 업컨버전 나노입자를 이용한 광역학치료와 이를 이용한 질병 치료 효과 향상에 대한 최근의 연구결과를 바탕으로 서술하였다.
참고문헌 (Reference)
1 L. Feng, "g-
2 H. Wen, "Upconverting near-infrared light through energy management in core-shell-shell nanoparticles" 52 : 13419-13423, 2013
3 D. K. Chatterjee, "Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells" 3 : 73-82, 2008
4 C. Wang, "Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics" 3 : 317-330, 2013
5 Q. Liu, "Upconversion luminescence imaging of cells and small animals" 8 : 2033-2044, 2013
6 Z. Hou, "UV-emitting upconversion-based
7 F. Wang, "Tuning upconversion through energy migration in core-shell nanoparticles" 10 : 968-973, 2011
8 X. F. Qiao, "Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro" 4 : 4611-4623, 2012
9 S. S. Lucky, "Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy" 9 : 191-205, 2015
10 T. L. Doane, "The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy" 41 : 2885-2911, 2012
1 L. Feng, "g-
2 H. Wen, "Upconverting near-infrared light through energy management in core-shell-shell nanoparticles" 52 : 13419-13423, 2013
3 D. K. Chatterjee, "Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells" 3 : 73-82, 2008
4 C. Wang, "Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics" 3 : 317-330, 2013
5 Q. Liu, "Upconversion luminescence imaging of cells and small animals" 8 : 2033-2044, 2013
6 Z. Hou, "UV-emitting upconversion-based
7 F. Wang, "Tuning upconversion through energy migration in core-shell nanoparticles" 10 : 968-973, 2011
8 X. F. Qiao, "Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro" 4 : 4611-4623, 2012
9 S. S. Lucky, "Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy" 9 : 191-205, 2015
10 T. L. Doane, "The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy" 41 : 2885-2911, 2012
11 N. L. Oleinick, "The role of apoptosis in response to photodynamic therapy: what, where, why, and how" 1 : 1-21, 2002
12 M. R. Saboktakin, "The novel polymeric systems for photodynamic therapy technique" 65 : 398-414, 2014
13 S. Jin, "The evolution of gadolinium based contrast agents: From single-modality to multi-modality" 5 : 11910-11918, 2013
14 E. J. Hong, "Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials" 6 : 297-307, 2016
15 N. Bogdan, "Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles" 11 : 835-840, 2011
16 N. Teraphongphom, "Specimen mapping in head and neck cancer using fluorescence imaging" 2 : 447-452, 2017
17 L. Zhou, "Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers" 6 : 6938-, 2015
18 Y. Wang, "Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine" 136 : 271-273, 2014
19 J. L. Vivero-Escoto, "Silica-based nanoprobes for biomedical imaging and theranostic applications" 41 : 2673-2685, 2012
20 P. Couleaud, "Silica-based nanoparticles for photodynamic therapy applications" 2 : 1083-1095, 2010
21 D. Zheng, "Shell-engineering of hollow g-
22 W. M. Sharman, "Role of activated oxygen species in photodynamic therapy" 319 : 376-400, 2000
23 P. Zhang, "Recent progress in light-triggered nanotheranostics for cancer treatment" 6 : 948-968, 2016
24 W. Feng, "Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications" 5 : 75-, 2013
25 J. Lai, "Real-time monitoring of ATP-responsive drug release using mesoporous-silicacoated multicolor upconversion nanoparticles" 9 : 5234-5245, 2015
26 G. Makin, "Principles of chemotherapy" 24 : 161-165, 2014
27 S. De Koker, "Polymeric multilayer capsules for drug delivery" 41 : 2867-2884, 2012
28 Y. Wang, "Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry" 51 : 68-89, 2012
29 T. J. Dougherty, "Photoradiation therapy. II. cure of animal tumors with hematoporphyrin and light" 55 : 115-121, 1975
30 W. D. Jang, "Photofunctional hollow nanocapsules for biomedical applications" 2 : 2202-2211, 2014
31 P. Agostinis, "Photodynamic therapy of cancer: an update" 61 : 250-281, 2011
32 L. Ge, "Novel visible light-induced g-
33 Y. Guan, "Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy" 9 : 26731-26739, 2017
34 H. Wang, "Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles" 239 : 78-85, 2017
35 S. S. Lucky, "Nanoparticles in photodynamic therapy" 115 : 1990-2042, 2015
36 R. Naccache, "Multifunctional nanomaterials and their applications in drug delivery and cancer therapy" 4 : 1067-1105, 2012
37 F. Tang, "Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery" 24 : 1504-1534, 2012
38 K. Raemdonck, "Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery" 43 : 444-472, 2014
39 X. Xie, "Mechanistic investigation of photon upconversion in
40 A. P. Castano, "Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization" 1 : 279-293, 2004
41 M. Wang, "Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy" 6 : 8274-8282, 2014
42 P. Huang, "Lanthanide-doped
43 F. Chen, "In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles" 7 : 9027-9039, 2013
44 N. M. Idris, "In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers" 18 : 1580-1585, 2012
45 Y. Zheng, "Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis" 5 : 6717-6731, 2012
46 P. Yang, "Functionalized mesoporous silica materials for controlled drug delivery" 41 : 3679-3698, 2012
47 X. Liu, "Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells" 2 : 5358-5367, 2014
48 X. Chen, "Fe-g-
49 L. Liang, "Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy" 8 : 11945-11953, 2016
50 Y. Zhong, "Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of
51 J. Nicolas, "Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery" 42 : 1147-1235, 2013
52 A. V. Ambade, "Dendrimeric micelles for controlled drug release and targeted delivery" 2 : 264-272, 2005
53 L. Liang, "Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles" 51 : 461-470, 2017
54 R. Anand, "Citric acid-
55 V. Biju, "Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy" 43 : 744-764, 2014
56 R. Siegel, "Cancer statistics, 2013" 63 : 11-30, 2013
57 J. Sun, "Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles" 3 : 1139-, 2012
58 R. Lv, "An imaging-guided platform for synergistic photodynamic/photothermal/chemo therapy with pH/temperature-responsive drug release" 63 : 115-127, 2015
59 L. Feng, "A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy" 9 : 12993-13008, 2017
60 C. Dong, "A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy" 8 : 32688-32698, 2016
61 Z. Yu, "A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy" 9 : 11064-11074, 2015
62 A. Dong, "A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals" 133 : 998-1006, 2011
63 H. Zhang, "A comparison of
64 D. Wang, "808 nm driven
다양한 형태의 금속 산화물을 이용한 Pd계 복합 수소분리막의2원계 중간층 형성에 관한 연구
300 m3 h-1급 수소 생산을 위한 글리세롤 수증기 개질반응의 기술⋅경제성 분석
섬유산업 배기가스 정화용 Electric Fume Collector 설비의유지보수를 위한 맞춤형 세정제
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2013-12-01 | 평가 | SCOPUS 등재 (등재유지) | |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2010-02-19 | 학술지명변경 | 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering | |
2009-04-28 | 학술지명변경 | 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry | |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.32 | 0.32 | 0.34 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.33 | 0.33 | 0.45 | 0.05 |