RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Experiments on quantum phases in InAs/GaSb bilayers: Topological insulator and exciton condensation.

      한글로보기

      https://www.riss.kr/link?id=T14821390

      • 저자
      • 발행사항

        Ann Arbor : ProQuest Dissertations & Theses, 2016

      • 학위수여대학

        Rice University Physics and Astronomy

      • 수여연도

        2016

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        219 p.

      • 지도교수/심사위원

        Adviser: Rui-Rui Du.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recent developments in Quantum Spin Hall (QSH) effect have triggered much attention in inverted InAs/GaSb Quantum wells (QWs), which are the leading material in QSH systems. Inverted InAs/GaSb QWs are a type II heterostructure with the broken gap, where two dimensional (2D) electrons and holes are confined in spatially separated QWs. From the 1970s until now, the ground state of this structure has been discussed between two candidates: exciton insulator (BCS type exciton condensation) and hybridization gap. The QSH effect was theoretically proposed in the bulk hybridization gap. Although pioneer works about QSH effect have been performed, the conductive hybridization gap limits further exploration. For example, the existence of the QSH effect in this system is still not conclusive. In this thesis, through double-gate modulation, we investigated the whole phase in the inverted band of this structure. We observed two distinct quantum phases: time reversal symmetry (TRS) QSH insulator in the deeply inverted regime and exciton insulator in the shallowly inverted regime. In the deeply inverted regime, with the strain effect in InGaSb QW, we realized the insulating hybridization gap for the first time, which gave us the opportunity to observe TRS QSH effect in this system for the first time. With the largest bulk gap in known QSH systems, we observed the helical edges had the longest coherence length (nearly 13mum) and were more stable against temperature, compared with previous results, which paved the way to construct the room temperature topological circuit. In the shallowly inverted regime, the quantized plateau of QSH effect was observed in mesoscopic devices for the first time. Surprisingly, this helical edge mode was robust under the high magnetic field, demonstrating the first TRS broken QSH insulator. This novel quantum phase could not be understood in the single particle topological theory. Further studies showed that the bulk gap was dominated by exciton gap instead of hybridization gap. We performed the low temperature transport and Terahertz transmission measurement on the bulk exciton gap, and observed the solid evidence for the existence of BCS-like exciton condensation, which was under search for more than fifty years. Furthermore, we performed one dimensional Coulomb drag experiments in the topological circuit. We observed positive and negative drag results dependent on the temperature, indicating the charge symmetry and many-body correlation.
      번역하기

      Recent developments in Quantum Spin Hall (QSH) effect have triggered much attention in inverted InAs/GaSb Quantum wells (QWs), which are the leading material in QSH systems. Inverted InAs/GaSb QWs are a type II heterostructure with the broken gap, wh...

      Recent developments in Quantum Spin Hall (QSH) effect have triggered much attention in inverted InAs/GaSb Quantum wells (QWs), which are the leading material in QSH systems. Inverted InAs/GaSb QWs are a type II heterostructure with the broken gap, where two dimensional (2D) electrons and holes are confined in spatially separated QWs. From the 1970s until now, the ground state of this structure has been discussed between two candidates: exciton insulator (BCS type exciton condensation) and hybridization gap. The QSH effect was theoretically proposed in the bulk hybridization gap. Although pioneer works about QSH effect have been performed, the conductive hybridization gap limits further exploration. For example, the existence of the QSH effect in this system is still not conclusive. In this thesis, through double-gate modulation, we investigated the whole phase in the inverted band of this structure. We observed two distinct quantum phases: time reversal symmetry (TRS) QSH insulator in the deeply inverted regime and exciton insulator in the shallowly inverted regime. In the deeply inverted regime, with the strain effect in InGaSb QW, we realized the insulating hybridization gap for the first time, which gave us the opportunity to observe TRS QSH effect in this system for the first time. With the largest bulk gap in known QSH systems, we observed the helical edges had the longest coherence length (nearly 13mum) and were more stable against temperature, compared with previous results, which paved the way to construct the room temperature topological circuit. In the shallowly inverted regime, the quantized plateau of QSH effect was observed in mesoscopic devices for the first time. Surprisingly, this helical edge mode was robust under the high magnetic field, demonstrating the first TRS broken QSH insulator. This novel quantum phase could not be understood in the single particle topological theory. Further studies showed that the bulk gap was dominated by exciton gap instead of hybridization gap. We performed the low temperature transport and Terahertz transmission measurement on the bulk exciton gap, and observed the solid evidence for the existence of BCS-like exciton condensation, which was under search for more than fifty years. Furthermore, we performed one dimensional Coulomb drag experiments in the topological circuit. We observed positive and negative drag results dependent on the temperature, indicating the charge symmetry and many-body correlation.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼