RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      TRAFFIC FLOW MODELS WITH NONLOCAL LOOKING AHEAD-BEHIND DYNAMICS

      한글로보기

      https://www.riss.kr/link?id=A106957770

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.
      번역하기

      Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the f...

      Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.

      더보기

      참고문헌 (Reference)

      1 A. Keimer, "uniqueness and regularity results on nonlocal balance laws" 263 (263): 4023-4069, 2017

      2 P. Goatin, "Well-posedness and nite volume approximations of the LWR trac ow model with non-local velocity" 11 (11): 107-121, 2016

      3 H. Liu, "Wave breaking in a class of nonlocal dispersive wave equations" 13 (13): 441-466, 2006

      4 A. Constantin, "Wave breaking for nonlinear nonlocal shallow water equations" 181 (181): 229-243, 1998

      5 S. A. Arrhenius, "Uber die Dissociationswarme und den Einuss der Temperatur auf den Dissociationsgrad der Elektrolyte" 4 : 96-116, 1889

      6 Y. Lee, "Thresholds for shock formation in trac ow models with Arrhenius look-ahead dynamics" 35 (35): 323-339, 2015

      7 V. O. Vakhnenko, "The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method" 13 (13): 1819-1826, 2002

      8 Y. Dolak, "The Keller-Segel model with logistic sensitivity function and small diusivity" 66 (66): 286-308, 2005

      9 A. Sopasakis, "Stochastic modeling and simulation of trac ow:asymmetric single exclusion process with Arrhenius look-ahead dynamics" 66 (66): 921-944, 2006

      10 H. Liu, "Spectral dynamics of the velocity gradient eld in restricted ows" 228 (228): 435-466, 2002

      1 A. Keimer, "uniqueness and regularity results on nonlocal balance laws" 263 (263): 4023-4069, 2017

      2 P. Goatin, "Well-posedness and nite volume approximations of the LWR trac ow model with non-local velocity" 11 (11): 107-121, 2016

      3 H. Liu, "Wave breaking in a class of nonlocal dispersive wave equations" 13 (13): 441-466, 2006

      4 A. Constantin, "Wave breaking for nonlinear nonlocal shallow water equations" 181 (181): 229-243, 1998

      5 S. A. Arrhenius, "Uber die Dissociationswarme und den Einuss der Temperatur auf den Dissociationsgrad der Elektrolyte" 4 : 96-116, 1889

      6 Y. Lee, "Thresholds for shock formation in trac ow models with Arrhenius look-ahead dynamics" 35 (35): 323-339, 2015

      7 V. O. Vakhnenko, "The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method" 13 (13): 1819-1826, 2002

      8 Y. Dolak, "The Keller-Segel model with logistic sensitivity function and small diusivity" 66 (66): 286-308, 2005

      9 A. Sopasakis, "Stochastic modeling and simulation of trac ow:asymmetric single exclusion process with Arrhenius look-ahead dynamics" 66 (66): 921-944, 2006

      10 H. Liu, "Spectral dynamics of the velocity gradient eld in restricted ows" 228 (228): 435-466, 2002

      11 P. I. Richards, "Shock waves on the highway" 4 : 42-51, 1956

      12 D. Li, "Shock formation in a trac ow model with Arrhenius look-ahead dynamics" 6 (6): 681-694, 2011

      13 J. Rubinstein, "Sedimentation of a dilute suspension" 1 (1): 637-643, 1989

      14 F. Betancourt, "On nonlocal conservation laws modelling sedimentation" 24 (24): 855-885, 2011

      15 M. J. Lighthill, "On kinematic waves. II. A theory of trac ow on long crowded roads" 229 : 317-345, 1955

      16 K. Zumbrun, "On a nonlocal dispersive equation modeling particle suspensions" 57 (57): 573-600, 1999

      17 J. K. Hunter, "Numerical solutions of some nonlinear dispersive wave equations, in Com-putational solution of nonlinear systems of equations" Amer. Math. Soc 26 : 301-316, 1988

      18 A. Keimer, "Nonlocal scalar conservation laws on bounded domains and applications in tracow" 50 (50): 6271-6306, 2018

      19 A. Kurganov, "Non-oscillatory central schemes for trac ow models with Arrhenius look-ahead dynamics" 4 (4): 431-451, 2009

      20 G. B. Whitham, "Linear and Nonlinear Waves" Wiley-Interscience 1974

      21 F. A. Chiarello, "Global entropy weak solutions for general non-local trac ow models with anisotropic kernel" 52 (52): 163-180, 2018

      22 J. Rubinstein, "Evolution equations for stratied dilute suspensions" 2 (2): 3-6, 1990

      23 E. Tadmor, "Critical thresholds in ocking hydrodynamics with non-local alignment" 372 (372): 22-, 2014

      24 T. Li, "Critical thresholds in hyperbolic relaxation systems" 247 (247): 33-48, 2009

      25 S. Engelberg, "Critical thresholds in Euler-Poisson equations" 50 (50): 109-157, 2001

      26 M. Burger, "Asymptotic analysis of an advectiondominated chemotaxis model in multiple spatial dimensions" 6 (6): 1-28, 2008

      27 G. Kynch, "A theory of sedimentation" 48 : 66-76, 1952

      28 R. Seliger, "A note on the breaking of waves" 303 : 493-496, 1968

      29 D. D. Holm, "A class of equations with peakon and pulson solutions" 12 (12): 380-394, 2005

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.14 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.375 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼