RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Bayesian Markov Chain Monte Carlo algorithm for Feller square-root stochastic volatility models = Feller제곱근 확률변동성모형에 대한 베이지언 MCMC알고리듬

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구는 Feller제곱근 확률변동성모형에 대한 새로운 베이지언 추론 알고리듬, 알고리듬의 성과에 대한 모의실험 결과, 그리고 알고리듬을 이용한 실증분석 결과를 제시한다. 본 연구의 알고리듬은 수익률과 조건부분산의 결합확률밀도함수로부터 유도되는 조건부분산의 GIG분포 확률커널을 정규분포로 근사하는 방법을 이용하므로 도약과정이나 두꺼운 꼬리를 가지는 수익률 분포를 포함하는 확장모형에도 쉽게 적용될 수 있다. 또한 본 연구의 알고리듬과 파티클필터를 통해 얻은 PIT를 이용하는 확률변동성모형 진단 통계량들의 사이즈와 검정력을 비교하는 모의실험 결과를 제시한다. 파라미터 추정에 따른 불확실성에 영향을 받지 않는 대표적인 비모수 검정인 Hong and Li (2005) 검정과 일반화된 잔차의 정규성을 이용하는 고전적 진단통계량들의 사이즈와 검정력에 대한 모의실험 결과, 고전적 진단통계량들의 사이즈왜곡이 심각하지 않을 수 있으며 검정력 또한 Hong-Li옴니버스검정(Q)보다 좋을 수 있는 것으로 나타났다.
      번역하기

      본 연구는 Feller제곱근 확률변동성모형에 대한 새로운 베이지언 추론 알고리듬, 알고리듬의 성과에 대한 모의실험 결과, 그리고 알고리듬을 이용한 실증분석 결과를 제시한다. 본 연구의 알...

      본 연구는 Feller제곱근 확률변동성모형에 대한 새로운 베이지언 추론 알고리듬, 알고리듬의 성과에 대한 모의실험 결과, 그리고 알고리듬을 이용한 실증분석 결과를 제시한다. 본 연구의 알고리듬은 수익률과 조건부분산의 결합확률밀도함수로부터 유도되는 조건부분산의 GIG분포 확률커널을 정규분포로 근사하는 방법을 이용하므로 도약과정이나 두꺼운 꼬리를 가지는 수익률 분포를 포함하는 확장모형에도 쉽게 적용될 수 있다. 또한 본 연구의 알고리듬과 파티클필터를 통해 얻은 PIT를 이용하는 확률변동성모형 진단 통계량들의 사이즈와 검정력을 비교하는 모의실험 결과를 제시한다. 파라미터 추정에 따른 불확실성에 영향을 받지 않는 대표적인 비모수 검정인 Hong and Li (2005) 검정과 일반화된 잔차의 정규성을 이용하는 고전적 진단통계량들의 사이즈와 검정력에 대한 모의실험 결과, 고전적 진단통계량들의 사이즈왜곡이 심각하지 않을 수 있으며 검정력 또한 Hong-Li옴니버스검정(Q)보다 좋을 수 있는 것으로 나타났다.

      더보기

      다국어 초록 (Multilingual Abstract)

      We develop a new Bayesian Markov Chain Monte Carlo algorithm for Euler-discretized Feller square-root stochastic volatility models and demon-strate the performance of our algorithm through simulations and empirical anal-yses. Specifically, our algorithm use the Laplace approximation of the posterior density of conditional variance, which is the probability kernel of the generalized inverse gaussian distribution, derived from the joint density of return and condi-tional variance so that it can be easily applied to the extended stochastic volatility models with such as fat-tailed distributions or Le´vy jump processes. In addition, we conduct the simulation experiment investigating and comparing the size and power of the parametric specification tests checking certain finite-dimensional moment conditions without correction for parameter estimation uncertainty with that of the nonparametric Hong and Li (2005)’s omnibus test which is not af-fected by parameter estimation uncertainty. The parametric and nonparametric tests are based on the probability integral transform of the prediction densities of returns obtained using auxiliary particle filter algorithms. Our experiment re-sult shows that the classical parametric specification test may have no worse size distortion and better power than Hong and Li (2005)’s test.
      번역하기

      We develop a new Bayesian Markov Chain Monte Carlo algorithm for Euler-discretized Feller square-root stochastic volatility models and demon-strate the performance of our algorithm through simulations and empirical anal-yses. Specifically, our a...

      We develop a new Bayesian Markov Chain Monte Carlo algorithm for Euler-discretized Feller square-root stochastic volatility models and demon-strate the performance of our algorithm through simulations and empirical anal-yses. Specifically, our algorithm use the Laplace approximation of the posterior density of conditional variance, which is the probability kernel of the generalized inverse gaussian distribution, derived from the joint density of return and condi-tional variance so that it can be easily applied to the extended stochastic volatility models with such as fat-tailed distributions or Le´vy jump processes. In addition, we conduct the simulation experiment investigating and comparing the size and power of the parametric specification tests checking certain finite-dimensional moment conditions without correction for parameter estimation uncertainty with that of the nonparametric Hong and Li (2005)’s omnibus test which is not af-fected by parameter estimation uncertainty. The parametric and nonparametric tests are based on the probability integral transform of the prediction densities of returns obtained using auxiliary particle filter algorithms. Our experiment re-sult shows that the classical parametric specification test may have no worse size distortion and better power than Hong and Li (2005)’s test.

      더보기

      목차 (Table of Contents)

      • 1. 서론
      • 2. Feller제곱근 확률변동성모형에 대한 베이지언 MCMC알고리듬
      • 4. 모의실험 및 실증분석
      • 5. 결론
      • 1. 서론
      • 2. Feller제곱근 확률변동성모형에 대한 베이지언 MCMC알고리듬
      • 4. 모의실험 및 실증분석
      • 5. 결론
      더보기

      참고문헌 (Reference)

      1 Tierney, L., "“Markov Chains for Exploring Posterior Distributions” (with discussion)" 22 : 1701-1762, 1994

      2 Gallant, A., "Which moments to match?" 12 : 657-681, 1996

      3 Chib, S., "Understanding the Metropolis-Hasting Algorithm" 49 (49): 327-335, 1995

      4 Duffie, D., "Transform Analysis and Asset Pricing For Affine Jump-Diffusions" 68 (68): 1343-1376, 2000

      5 Andersen, T., "Towards an empirical foundation for continuous-time equity return models" 57 : 1239-1284, 2002

      6 Pan, J., "The jump-risk premia implicit in options: Evidence from an integrated time-series study" 63 : 3-50, 2002

      7 Jones, C., "The dynamics of stochastic volatility: evidence from underlying and options markets" 116 : 181-224, 2003

      8 Bailey, W., "The Pricing of Stock Index Options in a General Equilibrium Model" 24 (24): 1-12, 1989

      9 Eraker, B., "The Impact of Jumps in Volatility and Returns" 58 (58): 1269-1300, 2003

      10 Bai, J., "Testing parametric conditional distributions of dynamic models" 85 : 531-549, 2003

      1 Tierney, L., "“Markov Chains for Exploring Posterior Distributions” (with discussion)" 22 : 1701-1762, 1994

      2 Gallant, A., "Which moments to match?" 12 : 657-681, 1996

      3 Chib, S., "Understanding the Metropolis-Hasting Algorithm" 49 (49): 327-335, 1995

      4 Duffie, D., "Transform Analysis and Asset Pricing For Affine Jump-Diffusions" 68 (68): 1343-1376, 2000

      5 Andersen, T., "Towards an empirical foundation for continuous-time equity return models" 57 : 1239-1284, 2002

      6 Pan, J., "The jump-risk premia implicit in options: Evidence from an integrated time-series study" 63 : 3-50, 2002

      7 Jones, C., "The dynamics of stochastic volatility: evidence from underlying and options markets" 116 : 181-224, 2003

      8 Bailey, W., "The Pricing of Stock Index Options in a General Equilibrium Model" 24 (24): 1-12, 1989

      9 Eraker, B., "The Impact of Jumps in Volatility and Returns" 58 (58): 1269-1300, 2003

      10 Bai, J., "Testing parametric conditional distributions of dynamic models" 85 : 531-549, 2003

      11 Bontemps, C., "Testing normality: AGMMapproach" 124 : 149-186, 2005

      12 Berkowitz, J., "Testing Density Forecasts, With Applications to Risk Management" 19 : 465-474, 2001

      13 Kim, S., "Stochastic volatility: likelihood inference and comparison with ARCH models" 45 : 361-393, 1998

      14 Omori, Y., "Stochastic Volatility with Leverage: Fast and Efficient Likelihood Inference" 140 : 425-449, 2007

      15 Jørgensen, B., "Statistical Properties of the Generalized Inverse Gaussian Distribution, Lecture Notes in Statistics 9" Springer-Verlag 1982

      16 Sørensen, M., "Statistical Methods for Stochastic Differential Equations" CRC Press 1-107, 2012

      17 Chacko, G., "Spectral GMM Estimation of Continuous-time Processes" 116 : 259-292, 2003

      18 Doucet, A., "Sequential Monte Carlo Methods in Practice" Springer-Verlag 2001

      19 Pitt, M. K., "Sequential Monte Carlo Methods in Practice" Springer-Verlag 271-293, 2001

      20 Rosenblatt M., "Remarks on a multivariate transformation" 23 : 470-472, 1952

      21 West, K.D., "Regression based tests of predictive ability" 39 : 817-840, 1998

      22 Fruhwirth-Schnatter, "Recursive Residuals and Model Diagnostics for Normal and Non-normal State Space Models" 3 (3): 291-309, 1996

      23 Devroye, L., "Random variate generation for the generalized inverse Gaussian distribution" 24 : 239-246, 2014

      24 Sentana, E., "Quadratic ARCH models" 62 : 639-661, 1995

      25 Bates, D., "Post-’87 crash fears in S&P 500 futures options" 94 : 181-238, 2000

      26 Malik, S., "Particle filters for continuous likelihood and maximization" 165 : 190-209, 2011

      27 Hong, Y., "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models" 22 (22): 457-473, 2004

      28 Johannes, M. S., "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices" 22 : 2759-2799, 2009

      29 Fiorentini, G., "One the validity of the Jarque-Bera normality test in conditional heteroscedastic dynamic regression models" 83 (83): 307-312, 2004

      30 Roberts, G.O., "On inference for partially oberserved nonlinear diffusion models using the Metropolis-Hastings algorithm" 88 : 603-621, 2001

      31 Kantas, N., "On Particle Methods for Parameter Estimation in State-Space Models" 30 (30): 328-351, 2015

      32 Durham G, "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with comments)" 20 : 297-316, 2002

      33 Hong, Y., "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates" 18 (18): 37-84, 2005

      34 Chen, Y-T., "Moment Tests for Density Forecast Evaluation in the Presence of Parameter Estimation Uncertainty" 30 : 409-450, 2011

      35 Christoffersen, P., "Models for S&P 500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices" 23 : 2139-2183, 2010

      36 Broadie, M., "Model Specification and Risk Premium : : Evidence from Futures Options" 62 (62): 1453-1490, 2007

      37 Aıt-Sahalia, Y., "Maximum-Likelihood Estimation of Discretely-Sampled Diffusions: A Closed-Form Approximation Approach" 70 : 223-262, 2002

      38 Newey W. K., "Maximum likelihood specification testing and conditional moment tests" 53 : 1047-1070, 1985

      39 Aıt-Sahalia, Y., "Maximum likelihood estimation of stochastic volatility models" 83 : 413-452, 2007

      40 Bates, D., "Maximum Likelihood Estimation of Latent Affine Processes" 19 (19): 909-965, 2006

      41 Jeanblanc, M., "Mathematical Methods for Financial Markets" Springer-Verlag 2009

      42 Chib, S., "Markov Chain Monte Carlo Methods for Stochastic Volatility Models" 108 : 281-316, 2002

      43 Eraker, B., "MCMC analysis of diffusion models with application to finance" 19 : 177-191, 2001

      44 Elerian O, "Likelihood inference for discretely observed nonlinear diffusions" 69 : 959-993, 2001

      45 Shephard, N., "Likeihood analysis of Non-Gaussian Measurement Time Series" 84 : 653-667, 1997

      46 Paolella, M., "Intermediate probability: A computational approach" Wiley 2007

      47 Barndorff-Nielsen, O. E., "Infinite divisibility of the hyperbolic and generalized inverse gaussian distribution" 38 (38): 309-311, 1977

      48 Andrews, D. W. K., "Heteroskedasticity and autocorrelation consistent covariance matrix estimation" 59 : 817-858, 1991

      49 Bibby B, "Handbook of financial econometrics" North-Holland 203-268, 2009

      50 Ghysels, E., "Handbook of Statistics Vol 14, Statistical Methods in Finance" Elsevier 119-191, 1996

      51 Doucet, A., "Handbook of Nonlinear Filtering" Oxford University Press 656-704, 2011

      52 Corradi V, "Handbook of Economic Forecasting, Vol. 1" Elsevier 197-280, 2006

      53 Pitt, M. K., "Filtering via simulation: auxiliary particle filters" 94 : 590-599, 1999

      54 Beskos, A., "Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes" 68 : 333-382, 2006

      55 Diebold F.X,, "Evaluating density forecasts with applications to fi nancial risk management" 39 : 863-883, 1998

      56 Jiang, G. J., "Estimation of Continuous Time Processes Via the Empirical Characteristic Function" 20 : 198-212, 2002

      57 Singleton, K. J., "Estimation of Affine Asset Pricing Models Using the Empirical Characteristic Function" 102 : 111-141, 2001

      58 Broto, C., "Estimation Methods For Stochastic Volatility Models : A Survey" 18 : 613-649, 2004

      59 Ferriani, F., "Estimating and testing non-affine pricing models with a large unbalanced panel of options" 15 : 171-205, 2012

      60 Andersen, T.G., "Estimating Continuous-Time Stochastic Volatility Models of the Short-term Interest Rate" 7 : 343-377, 1997

      61 Bakshi, G., "Empirical performance of alternative option pricing models" 52 : 2003-2049, 1997

      62 Ignatieva, K., "Empirical Analysis of Affine Versus Nonaffine Variance Specifications in Jump-Diffusion Models for Equity Indices" 33 : 68-75, 2015

      63 Eraker, B., "Do Stock Prices and Volatility Jumps? Reconciling Evidence from Spot and Option Prices" 59 (59): 1367-1403, 2004

      64 Gerlach, R., "Diagnostics For Time Series Analysis" 20 (20): 309-330, 1999

      65 Tauchen G., "Diagnostic testing and evaluation of maximum likelihood models" 30 : 415-443, 1985

      66 Smith, J. Q., "Diagnostic Checks of Non-standard Time Series Models" 4 : 283-291, 1985

      67 Li. W. K., "Diagnostic Checks in Time Series" Chapman & Hall/CRC 2004

      68 Geweke, J., "Comparing and Evaluating Bayesian predictiv distributions of asset returns" 26 : 216-230, 2010

      69 Aıt-Sahalia, Y., "Closed-form likelihood expansions for multivariate diffusions" 36 : 906-937, 2008

      70 Bauwens, L., "Bayesian inference on GARCH models using Gibbs sampler" 1 : C23-C46, 1998

      71 Geweke, J., "Bayesian Statistics 4" Oxford Univ. Press 169-194, 1992

      72 Jacquier, E., "Bayesian Analysis of Stochastic Volatility Models with Leverage Effect and Fat tails" 122 : 185-212, 2004

      73 Watanabe, T., "Bayesian Analysis of Dynamic Bivariate Mixture Models: Can They Explain the behavior of returns and Trading Volume?" 18 (18): 199-210, 2000

      74 Kass, R.E., "Bayes factors" 90 : 773-795, 1995

      75 West K. D., "Asymptotic inference about predictive ability" 64 : 1067-1087, 1996

      76 Gulisashvili, A., "Analytically Tractable Stochastic Stock Price Models" Springer-Verlag Berlin Heidelberg 2012

      77 Chib, S., "Analysis of High Dimensional Multivariate Stochastic Volatility Models" 134 : 341-371, 2006

      78 Carpenter, J., "An improved particle filter for non-linear problems" 146 : 2-7, 1999

      79 Andrews, D.W.K, "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator" 60 : 953-966, 1992

      80 Spreij, P., "An Affine Two-Factor Heteroskedastic Macro-Finance Term Structure Model" 18 (18): 331-352, 2011

      81 Chernov, M., "Alternative models for stock price dynamics" 116 : 225-257, 2003

      82 Hentschel, L., "All in the family: nesting symmetric and asymmetric GARCH models" 39 : 71-104, 1995

      83 Gilks, W., "Adaptive rejection Metropolis sampling with Gibbs sampling" 44 : 455-472, 1994

      84 Richardson, M., "A test for multivariate normality in stock returns" 66 : 295-321, 1993

      85 Chernov, M., "A study towards a unified approach to the joint estimation of objective and risk-neutral measures for the purpose of options valuation" 56 : 407-458, 2000

      86 Duan, J. C., "A specification test for time series models by a normality transformation" University of Toronto 2003

      87 Cox, J. C., "A Theory of the Term Structure of Interest Rates" 53 (53): 385-407, 1985

      88 Creal, D., "A Survey of Sequential Monte Carlo Methods For Economics and Fiance" 31 (31): 245-296, 2012

      89 Li. H., "A Bayesian Analysis of Return Dynamics with L´evy Jumps" 21 : 2345-2378, 2008

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-04-10 통합 KCI등재
      2020-04-01 학술지명변경 외국어명 : Journal of Economic Theory and Econometrics(JETEM) -> Journal of Economic Theory and Econometrics KCI등재
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2014-03-01 평가 SCOPUS 등재 (기타) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-12-01 학술지명변경 외국어명 : 미등록 -> Journal of Economic Theory and Econometrics(JETEM) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.09 0.09 0.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.09 0.07 0.363 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼