RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Emergent Dynamics of a Generalized Lohe Model on Some Class of Lie Groups

      한글로보기

      https://www.riss.kr/link?id=A107437773

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>We introduce a Lohe group which is a new class of matrix Lie groups and present a continuous dynamical system for the synchronization of group elements in a Lohe group. The Lohe group includes classical Lie groups such as the orthogonal, unitary, and symplectic groups, and since Lohe groups need not be compact, global existence of ODEs may fail. The proposed dynamical system generalizes the Lohe model (Lohe in J Phys A 43:465301, 2010; Lohe in J Phys A 42:395101-395126, 2009) itself a nonabelian generalization of the Kuramoto model, and alongside we also generalize the analytical framework (Ha and Ryoo in J Stat Phys 163:411-439, 2016) of emergent and unique phase-locked states. For the construction of the phase-locked states, we introduce Lyapunov functions measuring the ensemble diameter and the dissimilarity between two Lohe flows, and derive Gronwall-type differential inequalities for them. The global existence of solutions then become a consequence of the boundedness of these Lyapunov functions. Our sufficient framework for the emergent dynamics is formulated in terms of coupling strength and initial states, and it leads to the global existence of solutions and the formation and uniqueness of a phase-locked asymptotic state. As a concrete example, we demonstrate how our theory can show emergent phenomenon on the Heisenberg group, where all initial configurations tend to a unique phase-locked state exponentially fast.</P>
      번역하기

      <P>We introduce a Lohe group which is a new class of matrix Lie groups and present a continuous dynamical system for the synchronization of group elements in a Lohe group. The Lohe group includes classical Lie groups such as the orthogonal, unit...

      <P>We introduce a Lohe group which is a new class of matrix Lie groups and present a continuous dynamical system for the synchronization of group elements in a Lohe group. The Lohe group includes classical Lie groups such as the orthogonal, unitary, and symplectic groups, and since Lohe groups need not be compact, global existence of ODEs may fail. The proposed dynamical system generalizes the Lohe model (Lohe in J Phys A 43:465301, 2010; Lohe in J Phys A 42:395101-395126, 2009) itself a nonabelian generalization of the Kuramoto model, and alongside we also generalize the analytical framework (Ha and Ryoo in J Stat Phys 163:411-439, 2016) of emergent and unique phase-locked states. For the construction of the phase-locked states, we introduce Lyapunov functions measuring the ensemble diameter and the dissimilarity between two Lohe flows, and derive Gronwall-type differential inequalities for them. The global existence of solutions then become a consequence of the boundedness of these Lyapunov functions. Our sufficient framework for the emergent dynamics is formulated in terms of coupling strength and initial states, and it leads to the global existence of solutions and the formation and uniqueness of a phase-locked asymptotic state. As a concrete example, we demonstrate how our theory can show emergent phenomenon on the Heisenberg group, where all initial configurations tend to a unique phase-locked state exponentially fast.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼