RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      데이터 마이닝을 이용한 피칭과 팔 동작의 분류 = Classification of Ptching and Arm Motion Using Data Mining

      한글로보기

      https://www.riss.kr/link?id=A103571409

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      [PURPOSE] The purpose of this research is to classify pitching motions using the data mining method, which aims to help injury prevention overuse. [METHODS] One healthy person participated in the experiment. Subject performed six actions like pitching including pitching by wearing a smart band with IMU sensor built in the wrist. We converted the IMU data of each of the six motion into 5 Datasets. We performed data mining using the WEKA program to find the Dataset with the highest classification probability among the five Datasets and the appropriate classification model. [RESULTS] Among the 5 Datasets, Peak value Dataset when changing to Frequency domain through FFT showed the highest classification probability of each classification model, and NaiveBayes of each classification model had appropriate advantages for classification of pitching motion. Therefore NaiveBayes has decided on an appropriate classification model to classify pitching motion. [CONCLUSIONS] The data of the acceleration sensor and the gyroscope of the six actions are best classified for conversion using FFT and the NaiveBayes classification model is an appropriate classification model for classifying each motion
      번역하기

      [PURPOSE] The purpose of this research is to classify pitching motions using the data mining method, which aims to help injury prevention overuse. [METHODS] One healthy person participated in the experiment. Subject performed six actions like pitching...

      [PURPOSE] The purpose of this research is to classify pitching motions using the data mining method, which aims to help injury prevention overuse. [METHODS] One healthy person participated in the experiment. Subject performed six actions like pitching including pitching by wearing a smart band with IMU sensor built in the wrist. We converted the IMU data of each of the six motion into 5 Datasets. We performed data mining using the WEKA program to find the Dataset with the highest classification probability among the five Datasets and the appropriate classification model. [RESULTS] Among the 5 Datasets, Peak value Dataset when changing to Frequency domain through FFT showed the highest classification probability of each classification model, and NaiveBayes of each classification model had appropriate advantages for classification of pitching motion. Therefore NaiveBayes has decided on an appropriate classification model to classify pitching motion. [CONCLUSIONS] The data of the acceleration sensor and the gyroscope of the six actions are best classified for conversion using FFT and the NaiveBayes classification model is an appropriate classification model for classifying each motion

      더보기

      참고문헌 (Reference)

      1 남종철, "프로야구 투수의 어깨관절순 봉합술 후 재활프로그램 사례" 대한스포츠의학회 20 (20): 235-240, 2002

      2 김용권, "야구 선수의 연령별 관절운동범위 변화 연구" 대한스포츠의학회 25 (25): 45-52, 2007

      3 김갑식, "신용평가를 위한 데이터마이닝 분류모형의 통합모형에 관한 연구" 한국정보처리학회 12 (12): 211-218, 2005

      4 "WEKA HP"

      5 Yang, J, "Toward physical activity diary: motion recognition using simple acceleration features with mobile phones" 1-10, 2009

      6 Park, H. S, "Study on the Features of 3-axis Accelerometer Signal by Change of Sensor Positioning" 5 : 918-919, 2015

      7 Kim, C. S, "Sport injury status in Korean volleyball players during the 4 olympic games" 6 (6): 177-201, 1997

      8 Kim, Y. K, "Real-Time Step Count Detection Algorithm using a Tri-Axial Accelerometer" 48 : 127-137, 2011

      9 LEE, M.H, "Physical activity recognition using a single tri-axis accelerometer" 2009

      10 Wang, H. K, "Isokinetic performance and shoulder mobility in Taiwanese elite junior volleyball players" 12 (12): 135-141, 2004

      1 남종철, "프로야구 투수의 어깨관절순 봉합술 후 재활프로그램 사례" 대한스포츠의학회 20 (20): 235-240, 2002

      2 김용권, "야구 선수의 연령별 관절운동범위 변화 연구" 대한스포츠의학회 25 (25): 45-52, 2007

      3 김갑식, "신용평가를 위한 데이터마이닝 분류모형의 통합모형에 관한 연구" 한국정보처리학회 12 (12): 211-218, 2005

      4 "WEKA HP"

      5 Yang, J, "Toward physical activity diary: motion recognition using simple acceleration features with mobile phones" 1-10, 2009

      6 Park, H. S, "Study on the Features of 3-axis Accelerometer Signal by Change of Sensor Positioning" 5 : 918-919, 2015

      7 Kim, C. S, "Sport injury status in Korean volleyball players during the 4 olympic games" 6 (6): 177-201, 1997

      8 Kim, Y. K, "Real-Time Step Count Detection Algorithm using a Tri-Axial Accelerometer" 48 : 127-137, 2011

      9 LEE, M.H, "Physical activity recognition using a single tri-axis accelerometer" 2009

      10 Wang, H. K, "Isokinetic performance and shoulder mobility in Taiwanese elite junior volleyball players" 12 (12): 135-141, 2004

      11 Junge, A, "Injury surveillance in multi-sport events: the International Olympic Committee approach" 42 (42): 413-421, 2008

      12 Dumais, S, "Inductive learning algorithms and representations for text categorization" ACM 148-155, 1998

      13 Galathiya, A. S, "Improved Decision Tree Induction Algorithm with Feature Selection, Cross Validation, Model Complexity and Reduced Error Pruning" 3 (3): 3427-3431, 2012

      14 정재엽, "Effect of Visual and Somatosensory Information Inputs on Postural Sway in Patients With Stroke Using Tri-Axial Accelerometer Measurement" 한국전문물리치료학회 23 (23): 87-93, 2016

      15 Kao, T. P, "Development of a portable activity detector for daily activity recognition" 115-120, 2009

      16 Brian G. Ragan, "Construction of a Classification/Decision Tree" 한국체육측정평가학회 7 (7): 61-75, 2005

      17 Matsuo, T, "Comparison of kinematic and temporal parameters between different pitch velocity groups" 17 (17): 1-13, 2001

      18 Stanitski, C. L, "Common injuries in preadolescent and adolescent athletes recommendations for prevention" 7 (7): 32-41, 1989

      19 Siirtola, P, "Clustering-based activity classification with a wrist-worn accelerometer using basic features" 95-100, 2009

      20 Ravi, N, "Activity recognition from accelerometer data" 5 : 1541-1546, 2005

      21 Chernbumroong, S, "Activity classification using a single wrist-worn accelerometer" IEEE 1-6, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-31 학술지명변경 한글명 : 운동학 학술지 -> 아시아 운동학 학술지
      외국어명 : The Journal of Kinesiology -> The Asian Journal of Kinesiology
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2017-02-09 학술지명변경 외국어명 : The Official Journal of the Korean Academy of Kinesiology -> The Journal of Kinesiology KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2014-09-18 학술지명변경 외국어명 : 미등록 -> The Official Journal of the Korean Academy of Kinesiology KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.57 0.57 0.66
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.63 0.67 0.686 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼