RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      강화학습을 사용한 도달 가능 집합 기반 자동 수직 주차 경로 계획 = Path Planning for Automated Vertical Parking Based on Reachable Set Using Reinforcement Learning

      한글로보기

      https://www.riss.kr/link?id=A109735913

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Automated parking systems (APSs) require precise path planning, particularly in vertical parking scenarios where backward maneuvering is essential. Traditional geometric path planning methods often face challenges related to discontinuity and computational complexity. To overcome these limitations, this study proposes a reinforcement learning-based approach that leverages the concept of a reachable set to generate flexible and adaptive backward paths. Utilizing the deep deterministic policy gradient (DDPG) algorithm, the agent learns to navigate from diverse initial poses to predefined intermediate poses, enabling smooth and efficient trajectory generation. By interpreting the reachable set as a continuous region rather than discrete points, the method supports robust path planning even in constrained environments. This approach shows significant potential for real-time application and future extension to dynamic obstacle avoidance in complex parking scenarios.
      번역하기

      Automated parking systems (APSs) require precise path planning, particularly in vertical parking scenarios where backward maneuvering is essential. Traditional geometric path planning methods often face challenges related to discontinuity and computat...

      Automated parking systems (APSs) require precise path planning, particularly in vertical parking scenarios where backward maneuvering is essential. Traditional geometric path planning methods often face challenges related to discontinuity and computational complexity. To overcome these limitations, this study proposes a reinforcement learning-based approach that leverages the concept of a reachable set to generate flexible and adaptive backward paths. Utilizing the deep deterministic policy gradient (DDPG) algorithm, the agent learns to navigate from diverse initial poses to predefined intermediate poses, enabling smooth and efficient trajectory generation. By interpreting the reachable set as a continuous region rather than discrete points, the method supports robust path planning even in constrained environments. This approach shows significant potential for real-time application and future extension to dynamic obstacle avoidance in complex parking scenarios.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼