RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      부정확한 데이터를 가지는 자료포락분석을 위한 로버스트 최적화 모형의 적용 = Data Envelopment Analysis with Imprecise Data Based on Robust Optimization

      한글로보기

      https://www.riss.kr/link?id=A101706994

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Conventional data envelopment analysis (DEA) models require that inputs and outputs are given as crisp values. Very often, however, some of inputs and outputs are given as imprecise data where they are only known to lie within bounded intervals. While a typical approach to addressing this situation for optimization models such as DEA is to conduct sensitivity analysis, it provides only a limited ex-post measure against the data imprecision. Robust optimization provides a more effective ex-ante measure where the data imprecision is directly incorporated into the model. This study aims to apply robust optimization approach to DEA models with imprecise data. Based upon a recently developed robust optimization framework which allows a flexible adjustment of the level of conservatism, we propose two robust optimization DEA model formulations with imprecise data; multiplier and envelopment models. We demonstrate that the two models consider different risks regarding imprecise efficiency scores, and that the existing DEA models with imprecise data are special cases of the proposed models. We show that the robust optimization for the multiplier DEA model considers the risk that estimated efficiency scores exceed true values, while the one for the envelopment DEA model deals with the risk that estimated efficiency scores fall short of true values. We also show that efficiency scores stratified in terms of probabilistic bounds of constraint violations can be obtained from the proposed models. We finally illustrate the proposed approach using a sample data set and show how the results can be used for ranking DMUs.
      번역하기

      Conventional data envelopment analysis (DEA) models require that inputs and outputs are given as crisp values. Very often, however, some of inputs and outputs are given as imprecise data where they are only known to lie within bounded intervals. While...

      Conventional data envelopment analysis (DEA) models require that inputs and outputs are given as crisp values. Very often, however, some of inputs and outputs are given as imprecise data where they are only known to lie within bounded intervals. While a typical approach to addressing this situation for optimization models such as DEA is to conduct sensitivity analysis, it provides only a limited ex-post measure against the data imprecision. Robust optimization provides a more effective ex-ante measure where the data imprecision is directly incorporated into the model. This study aims to apply robust optimization approach to DEA models with imprecise data. Based upon a recently developed robust optimization framework which allows a flexible adjustment of the level of conservatism, we propose two robust optimization DEA model formulations with imprecise data; multiplier and envelopment models. We demonstrate that the two models consider different risks regarding imprecise efficiency scores, and that the existing DEA models with imprecise data are special cases of the proposed models. We show that the robust optimization for the multiplier DEA model considers the risk that estimated efficiency scores exceed true values, while the one for the envelopment DEA model deals with the risk that estimated efficiency scores fall short of true values. We also show that efficiency scores stratified in terms of probabilistic bounds of constraint violations can be obtained from the proposed models. We finally illustrate the proposed approach using a sample data set and show how the results can be used for ranking DMUs.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 구간 데이터를 가지는 DEA 모형
      • 3. 로버스트 선형최적화
      • 4. 로버스트 DEA 모형
      • Abstract
      • 1. 서론
      • 2. 구간 데이터를 가지는 DEA 모형
      • 3. 로버스트 선형최적화
      • 4. 로버스트 DEA 모형
      • 5. 수치 예제
      • 6. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 임성묵, "비방향 DEA 게임 교차효율성을 이용한 공급업체 선정방법" 한국산업경영시스템학회 38 (38): 108-119, 2015

      2 Bertsimas, D., "The price of robustness" 52 (52): 35-53, 2004

      3 Soyster, A. L., "Technical note-convex programming with set-inclusive constraints and applications to inexact linear programming" 21 (21): 1154-1157, 1973

      4 Banker, R. D., "Some models for estimating technical and scale inefficiencies in data envelopment analysis" 30 (30): 1078-1092, 1984

      5 Seiford, L.M., "Sensitivity analysis of DEA models for simultaneous changes in all the data" 49 (49): 1060-1071, 1998

      6 Ben-Tal, A., "Robust solutions of uncertain linear programs" 25 (25): 1-13, 1999

      7 Neralic, L., "Preservation of efficiency and inefficiency classification in data envelopment analysis" 9 (9): 51-62, 2004

      8 Charnes, A., "Measuring the efficiency of decision making units" 2 (2): 429-444, 1978

      9 Zhu, J., "Imprecise data envelopment analysis (IDEA) :A review and improvement with an application" 144 (144): 513-529, 2003

      10 Zhu, J., "Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company" 52 (52): 323-329, 2004

      1 임성묵, "비방향 DEA 게임 교차효율성을 이용한 공급업체 선정방법" 한국산업경영시스템학회 38 (38): 108-119, 2015

      2 Bertsimas, D., "The price of robustness" 52 (52): 35-53, 2004

      3 Soyster, A. L., "Technical note-convex programming with set-inclusive constraints and applications to inexact linear programming" 21 (21): 1154-1157, 1973

      4 Banker, R. D., "Some models for estimating technical and scale inefficiencies in data envelopment analysis" 30 (30): 1078-1092, 1984

      5 Seiford, L.M., "Sensitivity analysis of DEA models for simultaneous changes in all the data" 49 (49): 1060-1071, 1998

      6 Ben-Tal, A., "Robust solutions of uncertain linear programs" 25 (25): 1-13, 1999

      7 Neralic, L., "Preservation of efficiency and inefficiency classification in data envelopment analysis" 9 (9): 51-62, 2004

      8 Charnes, A., "Measuring the efficiency of decision making units" 2 (2): 429-444, 1978

      9 Zhu, J., "Imprecise data envelopment analysis (IDEA) :A review and improvement with an application" 144 (144): 513-529, 2003

      10 Zhu, J., "Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company" 52 (52): 323-329, 2004

      11 Cooper, W. W., "IDEA and AR-IDEA : Models for dealing with imprecise data in DEA" 45 (45): 597-607, 1999

      12 Cook, W.D., "Data envelopment analysis(DEA)-Thirty years on" 192 (192): 1-17, 2009

      13 Sadjadi, S.J., "Data envelopment analysis with uncertain data : An application for Iranian electricity distribution companies" 36 (36): 4247-4254, 2008

      14 Despotis, D.K., "Data envelopment analysis with imprecise data" 140 (140): 24-36, 2002

      15 Liu, J. S., "Data envelopment analysis 1978~2010 : A citation-based literature survey" 41 (41): 3-15, 2013

      16 유성진, "DEA 모형을 이용한 국내 대학의 경영 효율성 평가" 한국품질경영학회 42 (42): 647-664, 2014

      17 Sadjadi, S. J., "A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran" 38 (38): 10875-10881, 2011

      18 Shokouhi, A. H., "A robust optimization approach for imprecise data envelopment analysis" 59 (59): 387-397, 2010

      19 Oral, M., "A methodology for collective evaluation and selection of industrial R&D projects" 37 (37): 871-885, 1991

      20 Sadjadi, S.J., "A bootstrapped robust data envelopment analysis model for efficiency estimating of telecommunication companies in Iran" 34 (34): 221-232, 2010

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-11-29 학회명변경 영문명 : 미등록 -> KOREAN SOCIETY OF INDUSTRIAL AND SYSTEMS ENGINEERING KCI등재
      2021-11-25 학술지명변경 외국어명 : Journal of Society of Korea Industrial and Systems Engineering -> Journal of Korean Society of Industrial and Systems Engineering KCI등재
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-12-04 학술지명변경 한글명 : 산업경영시스템학회지 -> 한국산업경영시스템학회지
      외국어명 : Journal of the Society of Korea Industrial and Systems Engineering -> Journal of Society of Korea Industrial and Systems Engineering
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.28 0.37 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼