RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Precision Balance Control of Agricultural Transport Platform Using 3-PRS Parallel Mechanism = Precision Balance Control of Agricultural Transport Platform Using 3-PRS Parallel Mechanism

      한글로보기

      https://www.riss.kr/link?id=A108880944

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To alleviate the workload of farmers, transport robot platforms have been deployed in the agricultural field. However, when traversing inclined or bumpy terrains, existing robot transport platforms struggle to maintain the stability of the transported...

      To alleviate the workload of farmers, transport robot platforms have been deployed in the agricultural field. However, when traversing inclined or bumpy terrains, existing robot transport platforms struggle to maintain the stability of the transported goods. To tackle this challenge, we introduced a balance control system based on a 3-PRS parallel mechanism aimed at ensuring cargo stability. We utilized ADAMS and Matlab Simulink for joint simulation. Through ADAMS, we established the kinematic model of the 3-PRS parallel mechanism and input parameters such as the current angle and height of the platform into Matlab Simulink. After computing the kinematic inverse solution of the 3-PRS parallel mechanism, we employed PID control to ensure precise control, successfully simulating the maintenance of balance by the 3-PRS parallel stabilized platform during motion. To validate our approach, we installed an IMU on the actual robot platform to collect the current platform angle, utilized ROS for data communication, and realized the balance control system in reality. Our system achieved a maximum control angle of 12° on both the x and y axes, with a balance error of 0.08°. This indicates that our system can maintain balance on terrains with a slope not exceeding 12°, keeping the balance error within 0.08°, and achieving full balance within 1.1 seconds. Overall, our research presents a robust agricultural robot transport platform capable of maintaining cargo stability on inclined and bumpy terrains, significantly reducing the burden on farmers while greatly enhancing the reliability of agricultural transportation.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼