The object of this paper is to evaluate the fission product inventories and radiological doses in a non-LOCA event, based on the U.S. NRC's regulatory methodologies recommended by the TID-14844 and the RG 1.195. For choosing a non-LOCA event, one fuel...
The object of this paper is to evaluate the fission product inventories and radiological doses in a non-LOCA event, based on the U.S. NRC's regulatory methodologies recommended by the TID-14844 and the RG 1.195. For choosing a non-LOCA event, one fuel assembly was assumed to be melted by a channel blockage accident. The Hanul nuclear power reactor unit 6 and the CE $16{\times}16$ fuel assembly were selected as the computational models. The burnup cross section library for depletion calculations was produced using the TRITON module in the SCALE6.1 computer code system. Based on the recently licensed values for fuel enrichment and burnup, the source term calculation was performed using the ORIGEN-ARP module. The fission product inventories released into the environment were obtained with the assumptions of the TID-14844 and the RG 1.195. With two kinds of source terms, the radiological doses of public in normal environment reflecting realistic circumstances were evaluated by applying the average condition of meteorology, inhalation rate, and shielding factor. The statistical analysis was first carried out using consecutive three year-meteorological data measured at the Hanul site. The annual-averaged atmospheric dispersion factors were evaluated at the shortest representative distance of 1,000 m, where the residents are actually able to live from the reactor core, according to the methodology recommended by the RG 1.111. The Korean characteristic-inhalation rate and shielding factor of a building were considered for a series of dose calculations.