RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Inverse dynamics of a 3-DOF translational parallel kinematic machine

      한글로보기

      https://www.riss.kr/link?id=A103791229

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, kinematics and dynamics modeling of a typical 3-Degree of freedom (DOF) translational Parallel kinematic machine(PKM) is carried out. The kinematic structure of PKM consists of three limbs, connecting the base and the tool platform. Eac...

      In this paper, kinematics and dynamics modeling of a typical 3-Degree of freedom (DOF) translational Parallel kinematic machine(PKM) is carried out. The kinematic structure of PKM consists of three limbs, connecting the base and the tool platform. Each limb consistsof an arm and a forearm with joints Prismatic-revolute-revolute-revolute (PRRR). The arrangement of joints are in such a way thatthe tool platform will have pure translational motion along the Cartesian axes. Inverse kinematic relations that are necessary to find theslider positions and joint angles for a given position of tool platform are derived. The dynamics model is then derived based on Naturalorhogonal complement (NOC). The inverse dynamics equations presented are used to compute actuator forces. The actuator forces usingNOC are validated with those obtained based on Lagrangian method. The effect of slider, arm, and forearm inertia on the actuator forcesis studied to know whether to neglect the arm and forearm inertias while computing the actuator forces for PKM. Finally, an attempt ismade to find the optimal location of a circular trajectory using Genetic algorithms (GA) with minimization of Grand total actuator force(GTAF) as objective function.

      더보기

      참고문헌 (Reference)

      1 J. Angeles, "The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement" 55 : 243-244, 1988

      2 S. Shankarganesh, "Stiffness of a 3-degree of freedom translational parallel kinematic machine" 9 (9): 233-241, 2014

      3 L. W. Tsai, "Solving the inverse dynamics of a Stewart Gough manipulator by the principle of virtual work" 122 : 3-9, 2000

      4 C. M. Gosselin, "Singularity analysis of closed loop kinematic chains" 6 : 281-290, 1990

      5 S. K. Saha, "Recursive kinematics and dynamics for parallel structured closedloop multibody systems" 29 (29): 143-175, 2001

      6 J. P. Merlet, "Parallel Robots" Academic publishers 2000

      7 S. Pugazhenthi, "Optimal trajectory planning for a hexapod machine tool during contour machining" 216 : 1247-1257, 2002

      8 S. Darvekar, "Optimal design and development of a 2-DOF PKM-based machine tool" 67 (67): 1609-1621, 2013

      9 X. -J. Liu, "On the analysis of a new spatial three degrees of freedom parallel manipulator" 17 : 312-316, 1983

      10 S. Shankar Ganesh, "Multi-objective optimization of a 3-DOF translational parallel kinematic machine" 대한기계학회 27 (27): 3797-3804, 2013

      1 J. Angeles, "The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement" 55 : 243-244, 1988

      2 S. Shankarganesh, "Stiffness of a 3-degree of freedom translational parallel kinematic machine" 9 (9): 233-241, 2014

      3 L. W. Tsai, "Solving the inverse dynamics of a Stewart Gough manipulator by the principle of virtual work" 122 : 3-9, 2000

      4 C. M. Gosselin, "Singularity analysis of closed loop kinematic chains" 6 : 281-290, 1990

      5 S. K. Saha, "Recursive kinematics and dynamics for parallel structured closedloop multibody systems" 29 (29): 143-175, 2001

      6 J. P. Merlet, "Parallel Robots" Academic publishers 2000

      7 S. Pugazhenthi, "Optimal trajectory planning for a hexapod machine tool during contour machining" 216 : 1247-1257, 2002

      8 S. Darvekar, "Optimal design and development of a 2-DOF PKM-based machine tool" 67 (67): 1609-1621, 2013

      9 X. -J. Liu, "On the analysis of a new spatial three degrees of freedom parallel manipulator" 17 : 312-316, 1983

      10 S. Shankar Ganesh, "Multi-objective optimization of a 3-DOF translational parallel kinematic machine" 대한기계학회 27 (27): 3797-3804, 2013

      11 W. Schiehlen, "Mulibody systems handbook" Springer-Verlag 1990

      12 Y. Li, "Kinematics and inverse dynamic analysis for a general 3-PRS spatial parallel mechanism" 23 : 219-229, 2005

      13 V. Stejskal, "Kinematics and dynamics of machinery" Marcel Dekker 1996

      14 S. Staicu, "Inverse dynamics of the 3-PRR planar parallel robot" 57 : 556-563, 2009

      15 F. Xi, "Inverse dynamics of hexapods using the natural orthogonal complement method" 21 (21): 73-82, 2002

      16 J. Enferadi, "Inverse dynamics analysis of a general spherical star-triangle parallel manipulator using principle of virtual work" 61 (61): 419-434, 2010

      17 W. Q. D. Do, "Inverse dynamic analysis and simulation of a platform type of robot" 5 (5): 209-227, 1988

      18 Siamak Pedrammehr, "Improved dynamic equations for the generally configured Stewart platform manipulator" 대한기계학회 26 (26): 711-721, 2012

      19 J. Angeles, "Fundamentals of Robotic Mechanical Systems" Springer-Verlag 2003

      20 F. Pierrot, "Fast parallel robots" 8 (8): 829-840, 1991

      21 S. Shankarganesh, "Error analysis and optimization of 3-DOF translational parallel kinematic machine" 9 (9): 120-129, 2014

      22 M. W. Walker, "Efficient dynamic computer simulation of robotic mechanisms" 104 : 205-211, 1982

      23 S. K. Saha, "Dynamics of nonholonomic mechanical systems using a natural orthogonal complement" 58 : 238-243, 1991

      24 A. B. K. Rao, "Dynamics modeling of hexaslides using decoupled natural orthogonal complement" 15 : 159-180, 2006

      25 P. M. Nia, "Dynamics modeling of 3-PSP parallel manipulator using natural orthogonal complement method (NOC)" 2009

      26 J. Angeles, "Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement" 7 (7): 32-47, 1988

      27 J. J. Murray, "Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control" 5 (5): 522-528, 1989

      28 J. J. Murray, "Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control" 5 (5): 522-528, 1989

      29 Y. Nakamara, "Dynamic computation of closed-link robot mechanisms with nonredudant and redundant actuators" 5 (5): 294-302, 1989

      30 G. Lebert, "Dynamic analysis and control of a Stewart platform manipulator" 10 (10): 629-655, 1993

      31 G. Lebert, "Dynamic analysis and control of a Stewart platform manipulator" 10 (10): 629-655, 1993

      32 J. Y. S. Luh, "Computation of input generalized forces for robots with closed kinematic chain mechanisms" 2 : 95-103, 1985

      33 A. Elkady, "Cartesian parallel manipulator: Modeling, control and simulation, Parallel Manipulators, Towards New Applications, Book ISBN 978-3-902613-40-0"

      34 S. K. Saha, "Analytical expression for the inverted inertia matrix of serial robots" 18 (18): 20-36, 1999

      35 D. Bae, "A recursive formulation for constrained mechanical system dynamics: Part II, Closed loop systems" 27 (27): 481-506, 1987

      36 J. M. Hollerbach, "A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity" 10 : 730-736, 1980

      37 D. Stewart, "A platform with six degrees of freedom" 180 (180): 371-386, 1965

      38 L. W. Tsai, "A parallel manipulator with only translational degrees of freedom" 1996

      39 J. Gallardo-Alvarado, "A novel six-degrees-of-freedom series-parallel manipulator" 대한기계학회 26 (26): 1901-1909, 2012

      40 M. Ceccarelli, "A new 3 DOF spatial parallel mechanism" 32 (32): 895-902, 1997

      41 D. Bae, "A generalized recursive formulation for constrained mechanical system dynamics" 27 (27): 293-315, 1999

      42 S. K. Saha, "A decomposition of the manipulator inertia matrix" 13 (13): 301-304, 1997

      43 A. Codourey, "A body oriented method for finding a linear form of the dynamic equatiojns of fully parallel robot" 1612-1618, 1997

      44 B. Dasgupta, "A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator" 33 (33): 1135-1152, 1998

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼