RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      센서 네트워크에서 계층적 필터링을 이용한 에너지 효율적인 데이터 집계연산 = An Energy-Efficient Data Aggregation using Hierarchical Filtering in Sensor Network

      한글로보기

      https://www.riss.kr/link?id=A101701214

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 연속질의에 대한 집계연산을 수행할 때, 센서 네트워크의 수명을 길게 하기 위해 각 센서 및 클러스터 헤드에서의 데이터 전송량을 줄이기 위한 방법을 제안한다. 센서의 에너지 소모를 줄이는 가장 중요한 요소는 전송되는 메시지 수를 줄이는 것이다. 본 논문에서 제안하는 방법은 기본적으로 클러스터링, 네트워크 내 집계 및 계층적 필터링을 결합한 것이다. 계층적 필터링이란 센서 네트워크를 두 계층으로 나누어 필터링하는 것이다. 1계층 필터링은 클러스터 멤버에서 클러스터 헤드로 데이터를 전송시 필터링을 수행하고, 2계층 필터링은 클러스터 헤드에서 기지국으로 데이터를 전송시 필터링을 수행한다. 이 방법은 기존의 데이터 필터링 방법보다 더 효율적이고 효과적인 방법이다. 다양한 실험을 통해서, 제안한 방법이 다른 방법들보다 더 많은 메시지를 줄이고, 네트워크의 생존기간이 더 증가하였음을 보여준다.
      번역하기

      본 논문에서는 연속질의에 대한 집계연산을 수행할 때, 센서 네트워크의 수명을 길게 하기 위해 각 센서 및 클러스터 헤드에서의 데이터 전송량을 줄이기 위한 방법을 제안한다. 센서의 에...

      본 논문에서는 연속질의에 대한 집계연산을 수행할 때, 센서 네트워크의 수명을 길게 하기 위해 각 센서 및 클러스터 헤드에서의 데이터 전송량을 줄이기 위한 방법을 제안한다. 센서의 에너지 소모를 줄이는 가장 중요한 요소는 전송되는 메시지 수를 줄이는 것이다. 본 논문에서 제안하는 방법은 기본적으로 클러스터링, 네트워크 내 집계 및 계층적 필터링을 결합한 것이다. 계층적 필터링이란 센서 네트워크를 두 계층으로 나누어 필터링하는 것이다. 1계층 필터링은 클러스터 멤버에서 클러스터 헤드로 데이터를 전송시 필터링을 수행하고, 2계층 필터링은 클러스터 헤드에서 기지국으로 데이터를 전송시 필터링을 수행한다. 이 방법은 기존의 데이터 필터링 방법보다 더 효율적이고 효과적인 방법이다. 다양한 실험을 통해서, 제안한 방법이 다른 방법들보다 더 많은 메시지를 줄이고, 네트워크의 생존기간이 더 증가하였음을 보여준다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes how to reduce the amount of data transmitted in each sensor and cluster head in order to lengthen the lifetime of sensor network by data aggregation of the continuous queries. The most important factor of reducing the sensor's energy dissipation is to reduce the amount of messages transmitted. The method proposed is basically to combine clustering, in-network data aggregation and hierarchical filtering. Hierarchical filtering is to divide sensor network by two tiers when filtering it. First tier performs filtering when transmitting the data from cluster member to cluster head, and second tier performs filtering when transmitting the data from cluster head to base station. This method is much more efficient and effective than the previous work. We show through various experiments that our scheme reduces the network traffic significantly and increases the network's lifetime than existing methods.
      번역하기

      This paper proposes how to reduce the amount of data transmitted in each sensor and cluster head in order to lengthen the lifetime of sensor network by data aggregation of the continuous queries. The most important factor of reducing the sensor's ener...

      This paper proposes how to reduce the amount of data transmitted in each sensor and cluster head in order to lengthen the lifetime of sensor network by data aggregation of the continuous queries. The most important factor of reducing the sensor's energy dissipation is to reduce the amount of messages transmitted. The method proposed is basically to combine clustering, in-network data aggregation and hierarchical filtering. Hierarchical filtering is to divide sensor network by two tiers when filtering it. First tier performs filtering when transmitting the data from cluster member to cluster head, and second tier performs filtering when transmitting the data from cluster head to base station. This method is much more efficient and effective than the previous work. We show through various experiments that our scheme reduces the network traffic significantly and increases the network's lifetime than existing methods.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 연구 배경 및 관련 연구
      • Ⅲ. 계층적 필터링 기법
      • 요약
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 연구 배경 및 관련 연구
      • Ⅲ. 계층적 필터링 기법
      • Ⅳ. 실험 및 분석
      • Ⅴ. 결론 및 향후 연구 계획
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼