RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Cu 이온에 적응된 토착호산성박테리아를 이용한 폐광석으로부터 미생물용출 효율 향상 = The Efficiency of Bioleaching Rates for Valuable Metal Ions from the Mine Waste Ore using the Adapted Indigenous Acidophilic Bacteria with Cu Ion

      한글로보기

      https://www.riss.kr/link?id=A101661949

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuSO_4{\cdot}5H_2O$ for 3 weeks and 6 weeks, respectively. As the adaptation experiment processed, the pH was rapidly decrease in the adaptation-medium of 6 weeks more than the 3 weeks. The result of bioleaching with the adapted bacteria for 42 days, the pH value of leaching-medium in the 3 weeks tend to increased, whereas the pH of the 6 weeks decreased. In decreasing the pH value in the adaptation-medium and in the leaching-medium, it was identified that the indigenous bacteria were adapted $Cu^{2+}$ the ion and the mine waste ores. The contents of Cu, Fe and Zn in the leaching solution were usually higher leached in 6 weeks than 3 weeks due to the adaptation. Considering the bioleaching rates of Cu, Fe and Zn from these leaching solutions, the highest increasing the efficiency metal ion were found to be Fe. Accordingly, it is expected that the more valuable element ions can be leached out from the any mine waste, if the adapted bacteria with heavy metals will apply in future bioleaching experiments.
      번역하기

      This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuS...

      This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuSO_4{\cdot}5H_2O$ for 3 weeks and 6 weeks, respectively. As the adaptation experiment processed, the pH was rapidly decrease in the adaptation-medium of 6 weeks more than the 3 weeks. The result of bioleaching with the adapted bacteria for 42 days, the pH value of leaching-medium in the 3 weeks tend to increased, whereas the pH of the 6 weeks decreased. In decreasing the pH value in the adaptation-medium and in the leaching-medium, it was identified that the indigenous bacteria were adapted $Cu^{2+}$ the ion and the mine waste ores. The contents of Cu, Fe and Zn in the leaching solution were usually higher leached in 6 weeks than 3 weeks due to the adaptation. Considering the bioleaching rates of Cu, Fe and Zn from these leaching solutions, the highest increasing the efficiency metal ion were found to be Fe. Accordingly, it is expected that the more valuable element ions can be leached out from the any mine waste, if the adapted bacteria with heavy metals will apply in future bioleaching experiments.

      더보기

      참고문헌 (Reference)

      1 고명수, "황산화균 Acidithiobacillus thiooxidans를 이용한 폐금은광산 광미에서의 중금속 용출" 한국자원공학회 46 (46): 239-251, 2009

      2 박천영, "화순 광산배수에 서식하는 토착 호산성 박테리아를 이용한 황철석의 용출 특성" 한국자원공학회 46 (46): 521-535, 2009

      3 한오형, "토착호산성 박테리아를 이용한 황동석 정광에 대한 생물학적 용출 특성 - 상온에서의 칼럼 용출 -" 한국자원공학회 47 (47): 678-689, 2010

      4 위대웅, "적용효과에 따른 페광석으로부터 생물학적 용출 향상" 21-23, 2011

      5 박천영, "고온성토착박테리아에 의한 방연석의 충식작용과 용출 향상" 한국자원공학회 48 (48): 11-24, 2011

      6 박천영, "고온성 박테리아를 이용한 섬아연석의 용출 특성 박천" 대한자원환경지질학회 43 (43): 573-587, 2010

      7 Norris, P.R., "Toxic metals in leaching systems, In Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena" Academic Press 83-102, 1978

      8 Tuovinen, O.H., "Tolerance of Thiobacillus ferrooxidans to some metals" 37 : 489-496, 1971

      9 Ahonen, L., "The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores, In Fundamental and Applied Biohydrometallurgy" Elsevier 13-22, 1986

      10 Sadler, W.R., "The inhibition of microorganisms by heavy metals" 2 : 158-168, 1967

      1 고명수, "황산화균 Acidithiobacillus thiooxidans를 이용한 폐금은광산 광미에서의 중금속 용출" 한국자원공학회 46 (46): 239-251, 2009

      2 박천영, "화순 광산배수에 서식하는 토착 호산성 박테리아를 이용한 황철석의 용출 특성" 한국자원공학회 46 (46): 521-535, 2009

      3 한오형, "토착호산성 박테리아를 이용한 황동석 정광에 대한 생물학적 용출 특성 - 상온에서의 칼럼 용출 -" 한국자원공학회 47 (47): 678-689, 2010

      4 위대웅, "적용효과에 따른 페광석으로부터 생물학적 용출 향상" 21-23, 2011

      5 박천영, "고온성토착박테리아에 의한 방연석의 충식작용과 용출 향상" 한국자원공학회 48 (48): 11-24, 2011

      6 박천영, "고온성 박테리아를 이용한 섬아연석의 용출 특성 박천" 대한자원환경지질학회 43 (43): 573-587, 2010

      7 Norris, P.R., "Toxic metals in leaching systems, In Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena" Academic Press 83-102, 1978

      8 Tuovinen, O.H., "Tolerance of Thiobacillus ferrooxidans to some metals" 37 : 489-496, 1971

      9 Ahonen, L., "The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores, In Fundamental and Applied Biohydrometallurgy" Elsevier 13-22, 1986

      10 Sadler, W.R., "The inhibition of microorganisms by heavy metals" 2 : 158-168, 1967

      11 Mason, L.J., "The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrate" 15 : 795-808, 2002

      12 Sampson, M.I., "Testing the ability of a low grade sphalerite concentrate to achieve autothermaloty during biooxidation heap leaching" 18 : 427-437, 2005

      13 Stackebrandt, E., "Taxonomic note: a place for DNA-DNA hybridization and 16S rRNA sequence analysis in the present species definition on bacteriology" 44 : 846-849, 1994

      14 Das, A., "Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance" 73 : 215-222, 1998

      15 Jones, R.A., "Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans" 67 (67): 955-965, 2003

      16 Das, A., "Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans" 10 (10): 742-749, 1997

      17 Natarajan, K.A., "Stability of copper tolerance in Thiobacillus ferrooxidans" 66 : 303-306, 1994

      18 Natarajan, K.A., "Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides" 18 : 1095-1111, 1983

      19 Malouf, E.E., "Role of bacteria in the alteration of sulfide minerals" 13 : 353-356, 1961

      20 Rawlings, D., "Molecular genetics of Thiobacillus ferrooxidans" 58 : 39-55, 1994

      21 Torma, A.E., "Microbiological leaching of a zinc sulfide concentrate" 12 : 501-517, 1970

      22 Groudev, S.N., "Microbial communities in four industrial copper dump leaching opperations in Bulgaria" 11 : 261-268, 1993

      23 Xia, L., "Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite" 92 : 95-101, 2008

      24 Mehta, A.P., "Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of Thiobacillus ferrooxidans (30℃) and a thermophilic microogram (55℃)" 24 : 919-940, 1982

      25 Li, H.M., "Influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans" 14 (14): 113-116, 2001

      26 Norris, P.R., "Growth and iron oxidation by acidophilic moderate thermophiles" 28 : 221-224, 1985

      27 Hiskey, J.B., "Galvanic conversion of chalcopyrite" 6B : 183-190, 1975

      28 Mehta, A.P., "Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides" 9 : 235-256, 1983

      29 Attia, Y.A., "Effects of galvanic interactions of sulfides on extraction of percious metals from refractory complex sulfides by bioleaching" 30 : 99-111, 1990

      30 Elzeky, M., "Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides" 56 : B115-B124, 1995

      31 Miller, C.L., "Ecological aspects of microorganisms inhabiting uranium mill tailings" 14 : 141-155, 1987

      32 Mousavi, S.M., "Comparation of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor" 80 : 139-144, 2005

      33 Shahverdi, A.R., "Biooxidation of mouth refractory gold-bearing concentrate by an adapted Thiobacullus ferrooxidans" 12 : 209-212, 2001

      34 Attia, Y.A., "Bioleaching of non-ferrous sulfides with adapted thiophillic bacteria" 44 : B31-B40, 1990

      35 Attia, Y.A., "Bioleaching of gold pyrite tailings with adapted bacteria" 22 : 291-300, 1989

      36 Karimi, G.R., "Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperature" 88 : 21-25, 2010

      37 Silver, S., "Bacterial heavy metal resistance: new surprises" 50 : 753-789, 1996

      38 Woese, C.R., "Bacterial evolution" 51 : 221-271, 1987

      39 Colmer, A.R., "An ironoxidizing bacterium from the acid drainage of some bituminous coal mines" 59 : 317-328, 1950

      40 Barr, D.W., "An investigation into bacterial cell, ferrous iron, pH and Eh interactions during thermophilic leaching of copper concentrates" 5 : 557-567, 1992

      41 Dugan, P.R., "Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: Microscopic examination of acid streamers" 101 (101): 973-981, 1970

      42 Machemer, S.D., "Adsorption compared with sulfide precipitation as metal removal process from acid mine drainage in a constructed wetland" 9 : 115-131, 1992

      43 Kai, T., "Adaptation of Thiobacillus ferrooxidans to nickel ion and bacterial oxidation of nickel sulfide" 17 (17): 229-232, 1995

      44 Astudillo, C., "Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate" 92 : 11-15, 2008

      45 Haghshenas, D.F., "Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate" 22 : 1299-1306, 2009

      46 Sanmugasunderam, V., "A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans" 27 : 1173-1184, 1985

      47 Mielke, R.E., "A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-meutral conditions" 1 : 81-90, 2003

      48 박천영, "42℃에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성" 대한자원환경지질학회 43 (43): 109-121, 2010

      49 박천영, "16S rRNA 염기서열을 이용한 고성, 연화 및 일본 토착호산성박테리아 동정" 한국지구시스템공학회 18-20, 2011

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.3 0.3 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.36 0.568 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼