RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Does Photomineralization of Dissolved Organics Matter in Temperate Rivers?

      한글로보기

      https://www.riss.kr/link?id=O111940548

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-8953

      • Online ISSN

        2169-8961

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Sunlight can oxidize dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in freshwaters. The importance of complete photooxidation, or photomineralization, as a sink for DOC remains unclear in temperate rivers, as most estimates are res...

      Sunlight can oxidize dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in freshwaters. The importance of complete photooxidation, or photomineralization, as a sink for DOC remains unclear in temperate rivers, as most estimates are restricted to lakes, high latitude rivers, and coastal river plumes. In this study, we construct a model representing over 75,000 river reaches in the Connecticut River Watershed (CRW), USA, to calculate spectrally resolved photomineralization. We test the hypothesis that photomineralization is a negligible DOC sink across all reaches and flow conditions relative to DOC fluxes. Our model quantifies reaction rates and transport drivers within the river reaches for the ranges of flow conditions, incoming solar irradiance, and canopy cover shading observed throughout the year. Our model predicts average daily areal photomineralization rates ranging from 1.16 mg‐C m−2 day−1 in low flow river reaches in the winter, to 18.33 mg‐C m−2 day−1 in high flow river reaches during the summer. Even for high photomineralization fluxes, corresponding photomineralization uptake velocities are typically at least an order of magnitude smaller than those reported for other instream processes. We calculate DOC elimination by photomineralization relative to DOC fluxes through individual stream reaches as well as the entire riverine portion of the CRW. We find that relative photomineralization fluxes are highest in summer drought conditions in low order streams. In median flows and mean light intensities, for an average watershed travel distance, 3%–5% of the DOC fluxes are eliminated, indicating that photomineralization is a minor DOC sink in temperate rivers.
      Rivers are an important part of the carbon cycle, moving carbon compounds from land to the ocean. Within rivers, dissolved organic carbon molecules can be broken down into inorganic carbon molecules, including the greenhouse gas carbon dioxide. Sunlight shining into rivers can cause these organic molecules to break down in a process called photomineralization, but it is not clear if this process is important compared to the total amount of organic carbon that travels through rivers every day. In this paper, we build a model for the river sections of temperate Connecticut River Watershed, which calculates photomineralization for possible river flow conditions, dissolved organic carbon concentrations, and seasons, and compares the size of the sunlight‐driven breakdown of dissolved organic carbon to the amount of dissolved organic carbon in the river. This is the first model that puts photomineralization rates in the context of a flowing temperate river network. We show that compared with the dissolved organic carbon amounts present in the river at any time of the year or any flow conditions, photomineralization is essentially an unimportant process, removing on average 3%–5% of the dissolved organic carbon through an average watershed river route.



      We build a model calculating reaction and transport drivers for photomineralization in 75,000 temperate river reaches

      Photomineralization is a negligible dissolved organic carbon (DOC) sink relative to DOC fluxes

      DOC elimination by photomineralization in temperate rivers is limited by short water residence times and canopy cover


      We build a model calculating reaction and transport drivers for photomineralization in 75,000 temperate river reaches
      Photomineralization is a negligible dissolved organic carbon (DOC) sink relative to DOC fluxes
      DOC elimination by photomineralization in temperate rivers is limited by short water residence times and canopy cover

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼