RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      X-linked inhibitor of apoptosis protein controls α5-integrin-mediated cell adhesion and migration

      한글로보기

      https://www.riss.kr/link?id=A107573612

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P> The association of integrins with caveolin-1 regulates cell adhesion. However, the vascular ramifications of this association remain to be clearly determined. We recently reported that the X chromosome-linked inhibitor of apoptosis protein (XIAP)-caveolin-1 interaction is critical to endothelial cell survival. Thus, we hypothesized that XIAP performs a crucial function in integrin/caveolin-1-mediated endothelial cell survival. In this study, we demonstrated that XIAP is recruited into the α5-integrin complex via caveolin-1 binding and mediates cell adhesion. We also determined that XIAP is critical to shear stress-stimulated ERK activation in an α5-integrin-dependent manner but is not important to VEGF-induced ERK activation. This differential activation of ERK is partly attributable to unique localizations of the receptors. Furthermore, we confirmed that XIAP is an essential molecule in the efficient recruitment of focal adhesion kinase (FAK) into the α5-integrin-associated complex. This α5-integrin-caveolin-1-XIAP-FAK multicomplex regulates endothelial cell migration via a mechanism that involves shear-dependent ERK activation. Together, our results indicate that XIAP stabilizes the α5-integrin-associated focal adhesion complex, thereby further regulating endothelial cell adhesion and migration. The findings of this study provide us with greater insight into the molecular mechanisms underlying the control of vascular function by integrins. </P>
      번역하기

      <P> The association of integrins with caveolin-1 regulates cell adhesion. However, the vascular ramifications of this association remain to be clearly determined. We recently reported that the X chromosome-linked inhibitor of apoptosis protein (...

      <P> The association of integrins with caveolin-1 regulates cell adhesion. However, the vascular ramifications of this association remain to be clearly determined. We recently reported that the X chromosome-linked inhibitor of apoptosis protein (XIAP)-caveolin-1 interaction is critical to endothelial cell survival. Thus, we hypothesized that XIAP performs a crucial function in integrin/caveolin-1-mediated endothelial cell survival. In this study, we demonstrated that XIAP is recruited into the α5-integrin complex via caveolin-1 binding and mediates cell adhesion. We also determined that XIAP is critical to shear stress-stimulated ERK activation in an α5-integrin-dependent manner but is not important to VEGF-induced ERK activation. This differential activation of ERK is partly attributable to unique localizations of the receptors. Furthermore, we confirmed that XIAP is an essential molecule in the efficient recruitment of focal adhesion kinase (FAK) into the α5-integrin-associated complex. This α5-integrin-caveolin-1-XIAP-FAK multicomplex regulates endothelial cell migration via a mechanism that involves shear-dependent ERK activation. Together, our results indicate that XIAP stabilizes the α5-integrin-associated focal adhesion complex, thereby further regulating endothelial cell adhesion and migration. The findings of this study provide us with greater insight into the molecular mechanisms underlying the control of vascular function by integrins. </P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼