RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계 = Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation

      한글로보기

      https://www.riss.kr/link?id=A101069842

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound fie...

      The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff-Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

      더보기

      다국어 초록 (Multilingual Abstract)

      The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound fie...

      The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

      더보기

      참고문헌 (Reference)

      1 강동수, "음장 제어를 위한 구형 다채널 스피커 시스템 설계 및 성능 비교" 39-48,

      2 이태웅, "음장 제어 실험을 위한 32채널 스피커 시스템 구성" 868-869, 2009

      3 M. Fink, "Time Reversal of Ultrasonic Fields-Part I : Basic Principles" 39 (39): 555-566, 1992

      4 N. J. A. Sloane, "Tables of spherical codes"

      5 F. M. Fazi, "Surround system based on three dimensional sound field reconstruction" 1997

      6 J.–W. Choi, "Spatial Manipulation and Implementation of Sound" Korea Advanced Institute of Science and Technology 2005

      7 KAIST Acoustics & Vibration Laboratory, "Soundball Project"

      8 Y.–H. Kim, "Sound visualization and manipulation : theories and applications" 4-7, 2011

      9 김양한, "Sound propagation" John Wiley & Sons (Asia) 2010

      10 D. B. Ward, "Reproduction of a Plane-Wave Sound Field Using an Array of Loudspeakers" 9 (9): 697-707, 2001

      1 강동수, "음장 제어를 위한 구형 다채널 스피커 시스템 설계 및 성능 비교" 39-48,

      2 이태웅, "음장 제어 실험을 위한 32채널 스피커 시스템 구성" 868-869, 2009

      3 M. Fink, "Time Reversal of Ultrasonic Fields-Part I : Basic Principles" 39 (39): 555-566, 1992

      4 N. J. A. Sloane, "Tables of spherical codes"

      5 F. M. Fazi, "Surround system based on three dimensional sound field reconstruction" 1997

      6 J.–W. Choi, "Spatial Manipulation and Implementation of Sound" Korea Advanced Institute of Science and Technology 2005

      7 KAIST Acoustics & Vibration Laboratory, "Soundball Project"

      8 Y.–H. Kim, "Sound visualization and manipulation : theories and applications" 4-7, 2011

      9 김양한, "Sound propagation" John Wiley & Sons (Asia) 2010

      10 D. B. Ward, "Reproduction of a Plane-Wave Sound Field Using an Array of Loudspeakers" 9 (9): 697-707, 2001

      11 V. I. Lebedev, "Quadratures on a sphere" 16 (16): 293-306, 1976

      12 M. A. Gerzon, "Periphony : with-height sound reproduction" 21 (21): 2-10, 1973

      13 S. L. Sobolev, "On mechanical quadrature formulae on the surface of a sphere" 3 (3): 486-496, 1962

      14 N. Epain, "Objective evaluation of a three dimensional sound field reproduction system" 2010

      15 "MERO Spaceframe system, (n.d.), Retrieved September 9, 2009"

      16 J.-W. Choi, "Integral approach for the reproduction of a virtual sound source surrounded by loudspeaker arrays" 2011

      17 J.-M. Lee, "In-situ calibration of a multichannel loudspeaker system by modeling transfer functions" Korea Advanced Institute of Science and Technology 2011

      18 A. J. Devaney, "Holography and the inverse source problem part II: Inhomogeneous media" 2 (2): 2006-2011, 1985

      19 김양한, "Generation of an acoustically bright zone with an illuminated region using multiple sources" ACOUSTICAL SOC AMER AMER INST PHYSICS 111 (111): 1695-1700, 200204

      20 Y.-H. Kim, "Generation of Sound ball: Its theory and implementation" Principles and Applications of Spatial Hearing, World Scientific 393-406, 2011

      21 R. P. Porter, "Diffraction-limited, scalar image formation with holograms of arbitrary shape" 60 : 1051-1059, 1970

      22 F. M. Fazi, "Application of functional analysis to the sound field reconstruction" 2007

      23 M. A. Gerzon, "Ambisonics in multichannel broadcasting and video" 20 : 859-871, 1985

      24 J. Daniel, "Ambisonics Encoding of Other Audio Formats for Multiple Listening Conditions" 1998

      25 J. S. Bamford, "Ambisonic sound for us" 1995

      26 장지호, "32채널 스피커 시스템을 이용한 소리 공 형성" 866-867, 2009

      27 J. Seo, "21-channel surround system based on physical reconstruction of a three dimensional target sound field" 2010

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.398 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼