RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      식물공장에서 적색과 청색 LED의 비율이 물냉이의 생장 및 글루코시놀레이트 함량에 미치는 영향 = Effect of Red and Blue LED Ratio on Growth and Glucosinolate Contents of Watercress (Nasturtium officinale) in a Plant Factory

      한글로보기

      https://www.riss.kr/link?id=A106991237

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Watercress (Nasturtium officinale) is a perennial aquatic plant of the Brassicacea that contains a large amount of glucosinolates, which act as a natural antioxidant in the human body with anticancer activity and an ability to reduce active oxygen tha...

      Watercress (Nasturtium officinale) is a perennial aquatic plant of the Brassicacea that contains a large amount of glucosinolates, which act as a natural antioxidant in the human body with anticancer activity and an ability to reduce active oxygen that attacks DNA. The aim of this study was to analyze the effects of blue light with red backlight conditions on growth and glucosinolates contents of watercress. Watercress seeds were sown on soil and seedling were grown for 2 weeks. Two weeks after sowing, watercress was transplanted to a hydroponic system with the following light conditions: R10 (Red:Blue = 10:0), R9B1 (Red:Blue = 9:1), R8B2 (Red:Blue = 8:2), R7B3 (Red:Blue = 7:3), R6B4 (Red:Blue = 6:4), and R1B1G1 (control, Red:Blue:Green = 1:1:1) and cultivated for 2 weeks. The stem length, shoot fresh weight, shoot dry weight, SPAD value and chlorophyll fluorescence (Fv/Fm) analysis of watercress were the highest in R7B3 and the lowest in R1B1G1. The photosynthesis rate and stomatal conductance showed the same tendency as watercress growth. Glucosinolate contents in watercress were the lowest at R9B1 and the highest at R7B3. R1B1G1 had a negative effect on the growth of watercress, but played a positive role in increasing the functional component.

      더보기

      국문 초록 (Abstract)

      물냉이는 십자화과에 속하며 다양한 기능성을 지닌 글루코시놀레이트를 함유한 다년생 수생 식물이다. 글루코시놀레이트는 항암 및 천연 산화 방지제로 DNA를 공격하는 활성산소의 활성을 ...

      물냉이는 십자화과에 속하며 다양한 기능성을 지닌 글루코시놀레이트를 함유한 다년생 수생 식물이다. 글루코시놀레이트는 항암 및 천연 산화 방지제로 DNA를 공격하는 활성산소의 활성을 감소시키는 역할을 한다. 본 연구는 광질에 따른 물냉이의 생장 및 클루코시놀레이트 함량 변화에 대해 알아보기 위해 수행되었다. 물냉이 종자를 토양에 파종하여 2주간 육묘하였다. 파종 2주 후 식물체를 수경재배 시스템에 정식하여 R10(R:B:G = 10:0:0), R9B1(R:B:G = 9:1:0), R8B2(R:B:G = 8:2:0), R7B3(R:B:G = 7:3:0), R6B4(R:B:G = 6:4:0), R1B1G1(R:B:G = 1:1:1)의 6가지의 광질 하에서 2주간 재배하였다. 물냉이의 초장, 생체중, 건물중 및 엽록소 함량 및 엽록소 형광 분석 결과 R7B3 처리구에서 물냉이의 생육이 가장 높게 나타났으며, R1B1G1에서 가장 낮게 나타났다. 물냉이의 광합성 및 기공전도도 분석 결과 물냉이의 생육과 동일한 경향으로 나타났다. 물냉이 체내 글루코시놀레이트 함량은 R9B1에서 가장 낮았으며, R7B3에서 가장 높게 나타났다. R1B1G1의 경우 물냉이의 생육에는 부정적인 영향을 미쳤으나, 기능성 물질 증대에는 긍정적인 역할을 하였다.

      더보기

      참고문헌 (Reference)

      1 김영진, "완전제어형 식물생산시스템에서 광질에 따른 아이스플랜트의 생육과 기능성물질 함량" 한국원예학회 34 (34): 878-885, 2016

      2 이혜진, "수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향" 한국원예학회 35 (35): 178-187, 2017

      3 이재수, "상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌" 한국원예학회 32 (32): 330-339, 2014

      4 최재윤, "배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향" (사) 한국생물환경조절학회 27 (27): 371-380, 2018

      5 복권정, "마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대" (사) 한국생물환경조절학회 28 (28): 158-165, 2019

      6 손기호, "단색 발광다이오드에서 자란 축면상추 두 품종의 엽형, 생장 및 기능성 물질" 한국원예학회 30 (30): 664-672, 2012

      7 Usha R. Palaniswamy, "Watercress: A Salad Crop with Chemopreventive Potential" American Society for Horticultural Science 11 (11): 622-626, 2001

      8 Dean A. Kopsell, "Variation in Lutein, β-carotene, and Chlorophyll Concentrations among Brassica oleracea Cultigens and Seasons" American Society for Horticultural Science 39 (39): 361-364, 2004

      9 Hoagland DR, "The water-culture method for growing plants without soil" Califonia Agricultural Experiment Station 1950

      10 Despommier D, "The vertical farm: feeding the world in the 21st century" Thomas Dunne Books 2010

      1 김영진, "완전제어형 식물생산시스템에서 광질에 따른 아이스플랜트의 생육과 기능성물질 함량" 한국원예학회 34 (34): 878-885, 2016

      2 이혜진, "수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향" 한국원예학회 35 (35): 178-187, 2017

      3 이재수, "상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌" 한국원예학회 32 (32): 330-339, 2014

      4 최재윤, "배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향" (사) 한국생물환경조절학회 27 (27): 371-380, 2018

      5 복권정, "마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대" (사) 한국생물환경조절학회 28 (28): 158-165, 2019

      6 손기호, "단색 발광다이오드에서 자란 축면상추 두 품종의 엽형, 생장 및 기능성 물질" 한국원예학회 30 (30): 664-672, 2012

      7 Usha R. Palaniswamy, "Watercress: A Salad Crop with Chemopreventive Potential" American Society for Horticultural Science 11 (11): 622-626, 2001

      8 Dean A. Kopsell, "Variation in Lutein, β-carotene, and Chlorophyll Concentrations among Brassica oleracea Cultigens and Seasons" American Society for Horticultural Science 39 (39): 361-364, 2004

      9 Hoagland DR, "The water-culture method for growing plants without soil" Califonia Agricultural Experiment Station 1950

      10 Despommier D, "The vertical farm: feeding the world in the 21st century" Thomas Dunne Books 2010

      11 N. L. Biddington, "The germination of watercress (Rorippa nasturtium-aquaticum) seeds. I. The effects of age, storage, temperature, light and hormones on germination" Informa UK Limited 58 (58): 417-426, 2015

      12 Horst Senger, "THE EFFECT OF BLUE LIGHT ON PLANTS AND MICROORGANISMS" Wiley 35 (35): 911-920, 1982

      13 Usha Palaniswamy, "Supplemental Light before Harvest Increases Phenethyl Isothiocyanate in Watercress under 8-hour Photoperiod" American Society for Horticultural Science 32 (32): 222-223, 1997

      14 Kim HH, "Stomatal conductance of lettuce grown under or exposed to different light qualities" 94 : 691-697, 2004

      15 e Govindje, "Sixty-Three Years Since Kautsky: Chlorophyll a Fluorescence" CSIRO Publishing 22 (22): 131-160, 1995

      16 Laura K. Manion, "SELENIUM FERTILIZATION INFLUENCES BIOMASS, ELEMENTAL ACCUMULATIONS, AND PHYTOCHEMICAL CONCENTRATIONS IN WATERCRESS" Informa UK Limited 37 (37): 327-342, 2014

      17 Liu Xiaoying, "Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED)" Academic Journals 11 (11): 6169-6177, 2012

      18 Liliana Rodrigues, "Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction" Royal Society of Chemistry (RSC) 6 (6): 30905-30918, 2016

      19 International Organization for Standardization, "Rapeseed: Determination of glucosinolates content - part 1. method using high-performance liquid chromatography" International Standard Organization 1992

      20 Schreiber U, "Progress in chlorophyll fluorescence research: major developments during the past years in retrospect" Springer 1993

      21 Roopa Banerjee, "Plant blue-light receptors" Springer Science and Business Media LLC 220 (220): 498-502, 2005

      22 Jie He, "Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs" Frontiers Media SA 8 : 361-, 2017

      23 J. F. Botto, "Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis" American Society of Plant Biologists (ASPB) 110 (110): 439-444, 1996

      24 R. Hernández, "Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs" Elsevier BV 121 : 66-74, 2016

      25 Winslow R. Briggs, "Phototropins 1 and 2: versatile plant blue-light receptors" Elsevier BV 7 (7): 204-210, 2002

      26 Goins GD, "Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes(LEDs)with and without supplemental blue lighting" 48 : 1407-1413, 1997

      27 S P Long, "Photoinhibition of Photosynthesis in Nature" Annual Reviews 45 (45): 633-662, 1994

      28 Helena Zahradníková, "Nematocid effects of watercress (Nasturtium officinale R. Br.)" Mendel University Press 61 (61): 233-236, 2013

      29 Daniel J. Tennessen, "Light-emitting diodes as a light source for photosynthesis research" Springer Science and Business Media LLC 39 (39): 85-92, 1994

      30 Gioia Massa, "Light-emitting Diode Light Transmission through Leaf Tissue of Seven Different Crops" American Society for Horticultural Science 50 (50): 501-506, 2015

      31 J. C. Sager, "Light Energy Utilization Efficiency for Photosynthesis" American Society of Agricultural and Biological Engineers (ASABE) 25 (25): 1737-1746, 1982

      32 Jun Wang, "Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light" Frontiers Media SA 7 : 250-, 2016

      33 최인이, "LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향" (사) 한국생물환경조절학회 28 (28): 265-272, 2019

      34 강우현, "LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상" 한국원예학회 34 (34): 84-93, 2016

      35 오상임, "LED 광질에 따른 섬기린초의 생육과 항산화물질 함량 및 활성 분석" 한국원예학회 37 (37): 589-597, 2019

      36 Kozai T, "LED lighting for urban agriculture" Springer Science+Business Media 2016

      37 Giedrė Samuolienė, "LED illumination affects bioactive compounds in romaine baby leaf lettuce" Wiley 93 (93): 3286-3291, 2013

      38 Hopkins WG, "Introduction to plant physiology" John Wily and Sons, Inc. 2004

      39 Dean A. Kopsell, "Increases in Shoot Tissue Pigments, Glucosinolates, and Mineral Elements in Sprouting Broccoli after Exposure to Short-duration Blue Light from Light Emitting Diodes" American Society for Horticultural Science 138 (138): 31-37, 2013

      40 Luana B. S. Nascimento, "Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light" Wiley 89 (89): 391-399, 2013

      41 Sharifah S. Syed Alwi, "In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study" Cambridge University Press (CUP) 104 (104): 1288-1296, 2010

      42 Hyo In Yoon, "Harvest strategies to maximize the annual production of bioactive compounds, glucosinolates, and total antioxidant activities of kale in plant factories" 한국원예학회 60 (60): 883-894, 2019

      43 손기호, "Growth, Photosynthetic and Antioxidant Parameters of Two Lettuce Cultivars as Affected by Red, Green, and Blue Light-emitting Diodes" 한국원예학회 56 (56): 639-653, 2015

      44 Folta KM, "Green light : a signal to slow down or stop" 58 : 3099-3111, 2007

      45 Kevin M. Folta, "Green Light Stimulates Early Stem Elongation, Antagonizing Light-Mediated Growth Inhibition" American Society of Plant Biologists (ASPB) 135 (135): 1407-1416, 2004

      46 Richard Mithen, "Glucosinolates-biochemistry, genetics and biological activity" Springer Science and Business Media LLC 34 (34): 91-103, 2001

      47 Wink M, "Functions and biotechnology of plant secondary metabolites" Wiley-Blackwell 2010

      48 Dickson Despommier, "Farming up the city: the rise of urban vertical farms" Elsevier BV 31 (31): 388-389, 2013

      49 C. Lin, "Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light." Proceedings of the National Academy of Sciences 92 (92): 8423-8427, 1995

      50 Qian Li, "Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce" Elsevier BV 67 (67): 59-64, 2009

      51 Rui M.S. Cruz, "Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics" Elsevier BV 9 (9): 483-488, 2008

      52 M. Johkan, "Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa" Elsevier BV 75 : 128-133, 2012

      53 Lee DS, "Effect of cold storage on the contents of glucosinolates in Chinese cabbage(Brassica rapa L. ssp. pekinensis)" 1 : 38-42, 2015

      54 Keiko OHASHI-KANEKO, "Effect of Light Quality on Growth and Vegetable Quality in Leaf Lettuce, Spinach and Komatsuna" Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists 45 (45): 189-198, 2007

      55 Smith HL, "Don’t ignore the green light: exploring diverse roles in plant processes" 68 : 2099-2110, 2017

      56 Craig R. Brodersen, "Do changes in light direction affect absorption profiles in leaves?" CSIRO Publishing 37 (37): 403-412, 2010

      57 Jennifer Di Noia, "Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach" Centers for Disease Control and Prevention (CDC) 11 : 2014

      58 Govindjee, "Chlorophyll a fluorescence: a bit of basics and history" Kluwer Academic Publishers 2004

      59 Hogewoning SW, "Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light" 61 : 3107-3117, 2010

      60 Masahumi Johkan, "Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce" American Society for Horticultural Science 45 (45): 1809-1814, 2010

      61 Chentao Lin, "Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development" Wiley 10 (10): 893-902, 1996

      62 A SCHUERGER, "Anatomical Features of Pepper Plants (Capsicum annuumL.) Grown under Red Light-emitting Diodes Supplemented with Blue or Far-red Light" Oxford University Press (OUP) 79 (79): 273-282, 1997

      63 Ryo Matsuda, "Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance" Informa UK Limited 53 (53): 459-465, 2007

      64 M.A. Mickens, "A strategic approach for investigating light recipes for ‘Outredgeous’ red romaine lettuce using white and monochromatic LEDs" Elsevier BV 19 : 53-62, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-02-08 학술지명변경 외국어명 : Korean Journal of Horticultural Science & Technology -> Horticultural Science & Technology KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.92 0.74 0.83
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.77 0.73 1.115 0.19
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼