RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      중도절단을 고려한 조건부 분위수 비모수적 추정

      한글로보기

      https://www.riss.kr/link?id=T13085689

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Censored data is a common problem in any kind of research. If censored data is ignored, the results could distort the facts. Therefore censored data should be considered. Quantile regression (QR) is a common way to investigate the possible relationships between a covariate and a response variable . The quantile regression approach allows the analyst to estimate the functional dependence between variables for all portions of the conditional distribution of the response variable. In this article, we propose new nonparametric estimators of the quantile regression, which are the modified versions of double-kernel technique of Yu and Jones (1998) and the local logistic regression in Lee et al. (2006) under random censoring. We compare the new proposal with some existing methods. Those include the approach by Gannoun et al. (2007) and Ghouch and Van Keilegom (2009) based on the ‘check function’. The comparison is done by integrated squared error through a simulation study. We find that the modified version of the local logistic regression and the check function approach of Gannoun et al. (2007) performs better in most cases.
      번역하기

      Censored data is a common problem in any kind of research. If censored data is ignored, the results could distort the facts. Therefore censored data should be considered. Quantile regression (QR) is a common way to investigate the possible relationsh...

      Censored data is a common problem in any kind of research. If censored data is ignored, the results could distort the facts. Therefore censored data should be considered. Quantile regression (QR) is a common way to investigate the possible relationships between a covariate and a response variable . The quantile regression approach allows the analyst to estimate the functional dependence between variables for all portions of the conditional distribution of the response variable. In this article, we propose new nonparametric estimators of the quantile regression, which are the modified versions of double-kernel technique of Yu and Jones (1998) and the local logistic regression in Lee et al. (2006) under random censoring. We compare the new proposal with some existing methods. Those include the approach by Gannoun et al. (2007) and Ghouch and Van Keilegom (2009) based on the ‘check function’. The comparison is done by integrated squared error through a simulation study. We find that the modified version of the local logistic regression and the check function approach of Gannoun et al. (2007) performs better in most cases.

      더보기

      목차 (Table of Contents)

      • 1. 서 론 1
      • 2. 조건부 분위수 비모수적 추정량들 7
      • 2.1 역함수 기법 9
      • 2.1.1 중복 커널 방법 9
      • 2.1.2 국소 로지스틱 회귀법 12
      • 1. 서 론 1
      • 2. 조건부 분위수 비모수적 추정량들 7
      • 2.1 역함수 기법 9
      • 2.1.1 중복 커널 방법 9
      • 2.1.2 국소 로지스틱 회귀법 12
      • 2.2 점검함수 기법 14
      • 3. 모의실험을 통한 비교 16
      • 4. 결론 및 고찰 30
      • 참고문헌 31
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼